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Melting at Grain Boundaries and Surfaces

In a recent Letter, Broughton and Gilmer' studied
melting at grain boundaries (GB) in a system of parti-
cles interacting via truncated Lennard-Jones forces.
They observed the growth of a disordered, liquidlike film
within the GB as the temperature, T, was raised towards
the triple point with T T3. In this Comment, I show

that the analogy between these melting phenomena and
related interfacial phase transitions, such as complete
wetting in fluids and surface-induced disorder in

solids, leads to new predictions for melting at boun-
daries.

On any point of the crystal-liquid (CL) coexistence
curve with pressure P and T T (P), the GB with in-
terfacial tension boa may contain a droplet of the melt
bounded by the CL interface with tension ycL. In equili-
brium, the interfacial tensions must balance which im-

plies yGa 2ycLcos(p), where p is the contact angle. In
a fluid context, this is known as Antonow's rule. s

When p 0, the droplet spreads out and the GB is
wetted by the melt. In this case, a disordered, liquidlike
film appears in the GB when the CL coexistence curve is
approached from T & T~(P). The Landau free energy
per unit area for a film of thickness i is3

with r =(T —T)/T, and A =T (SL —Sc), where Sl.
and Sc are the bulk entropies per unit volume of the
liquid and of the crystal at T . The term Vo(l ) depends
on the intermolecular forces. If these forces decay faster
than exponentially, Vo(l ) = ycLexp( —I/(L) for large i,
where (L is the bulk liquid correlation length at T .
This applies to truncated Lennard-Jones potentials as
studied in Ref. 1. Then, for three-dimensional systems,
the t dependence of the equilibrium thickness, l~, fol-
lows from mean-field theory, i.e., from 8V/8l 0.'
Thus, l~ aln(1/ )ras t 0. The same divergence fol-
lows for the excess energy. This is consistent with the
molecular-dynamics data obtained in Ref. 1.

In real solids, nonretarded and retarded van der Waals
forces lead to2 Vo(l) = —W/1 and Vo(l) = —W/1 in

(1) for large i, respectively. However, it follows from
the general theory of van der %aals forces that the
Hamaker constants W and W are always positive for a
liquidlike film intruding between two crystals which
differ in their orientation but not in their density. There-
fore, the effective van der Waals force between the two
CL interfaces is always attractive. Furthermore, interfa-
cial fluctuations cannot overcome this attraction in
three-dimensional systems. This implies that the liquid-
like film has a finite thickness, I~ at T T~, and the 68
can only be wetted incompletely by the melt. Neverthe-
less, the liquidlike film can consist of many atomic layers
and will have interesting physical properties since the
quasiliquid is strongly perturbed by the vicinity of the

two CL interfaces.
For surface melting, on the other hand, the effective

van der %aals force between the CL and the liquid-
vapor interface can be repulsive. Indeed, 8' and 8' are
expected to be negative in this case when the density in
the solid phase is larger than in the melt. Then,
l~~ I/r" as r 0 with 1Ir —,

' and —,
' for nonretarded and

retarded van der Waals forces, respectively.
For GB melting, the two CL interfaces bounding the

liquidlike layer differ in their orientation and, thus, can
differ in their roughening temperature Tg. So far, I
have tacitly assumed that at least one CL interface is
rough. If both were smooth, the growth of the liquidlike
film would occur in a layer-by-layer mode. This would
lead to (rounded) steps in the excess energy as a function
of T. Therefore, GB melting can be used to determine
T~ for the CL interface The. data in Ref. 1 for the
(310) system seem to indicate that at least one TR ( T3
in this case.

Finally, equilibration of thick, liquidlike layers within
a GB or at a surface will be rather slow: The layer
growth is controlled either by the free-energy gradient,
t)V/t)l, or by diffusion in the same way as for wetting
layers. s For short-range forces, for instance, l (z) CL. ln(z)
with time z as long as l (z) &(l~. The final approach to
equilibrium is given by l~ —l(z)CLexp( —z/zo) if the
growth is controlled by the free-energy gradient, and by
1~—l (z) ~ I/4z if it is limited by thermal diffusion.
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