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Employing a long-range potential model we investigate nucleation of crystalline droplets near the limit
of stability of the metastable liquid. The nucleation process is found to differ considerably from what is
predicted in standard models. I.n contrast to the classical nucleation mechanism this process provides a
qualitative explanation of the results of molecular-dynamics simulations of systems undergoing deep
quenches.
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Molecular-dynamics simulations of nucleation of crys-
talline solids from metastable liquids have often pro-
duced results which are difficult to understand from the
point of view of classical nucleation theory. Three exam-
ples are the following: (i) The nucleating droplet often
exhibits a bcc symmetry rather than the equilibrium fcc
structure. '2 (ii) Nucleation is seen via the onset of a
droplet with a crystalline symmetry but for some period
of time no effect is noticed in the thermodynamic param-
eters. '3 (iii) Nucleation barriers calculated from the
classical theory for quenches deep enough to observe (i)
and (ii) are of the orderz 3 of kiiT; however, the lifetime
of the metastable state is not consistent with such a bar-
rier height.

In contrast, nucleation in systems undergoing shallow
quenches appears to be similar to what one expects from
the classical theory. s s This suggests that the nucleation
mechanism is sensitive to the details of the quench. The
results obtained with the quench mechanisms used in
Refs. 1-3, and their variance with the results in Ref. 4,
are difficult to understand if one assumes that in all
cases nucleation takes place via the mechanism described
in classical nucleation theory.

In this Letter we introduce a nucleation mechanism
which differs considerably from the classical and which
provides a conceptual framework within which these re-
sults can be understood. The mechanism we propose is
analogous to the fractal or ramified droplet nucleation
found, under certain conditions, in Ising models and
fluids. '3 In this theory, as in Ising models, the classical

mechanism is modified because of the proximity of a spi-
nodal' ' which has the properties of a critical point. In
contrast, however, the instability we consider here is
characterized by a structure factor that diverges at a
nonzero i've vector We .stress that by "proximity of
the spinodal" we do not imply that the spinodal is a
singularity in the thermodynamic space which can be
reached by deep quenches. Rather we are referring to
the effect of spinodal-like behavior becoming more pro-
nounced in certain limits such as long-range potentials. 9

A picture which is useful, but as yet unproved is that the
spinodal is a singularity in the complex plane for finite-
range potentials which moves toward the real axis as the
potential range increases. We introduce this nonclas-
sical mechanism via a mean-field model consisting of
particles interacting with long-range repulsive potentials.
The predictions of our model are then compared with the
results in Refs. 1-3. We emphasize that our purpose is
to introduce a conceptual framework which can be used
to obtain a qualitative understanding of the phenomena
described above and to propose additional simulations
which are suggested by this point of view.

%e begin by obtaining the free-energy functional ap-
propriate to a system interacting with weak, long-range
repulsive potentials'4' of the form y P(y)x(), where

y
' is the range of the potential. In the limit y 0, one

obtains the mean-field theory' with its spinodal. The
free energy in the grand canonical ensemble can then be
computed from the one-particle distribution function
p(x) as follows'~:

pF(p) y „d ri pp (pr )i++„drzp([ri —rz( )p(ri)p(r2)+p(ri)lnp(ri) —p(ri),

where distances are measured in units of y '. Function-
ally differentiating with respect to p(ri) we obtain

p(., )-.-p —p„~(l. -"I)p(")d",
where z -exp( —pp). For repulsive potentials it is
known'4 that Eq. (2) has a constant solution p(ri) p
for all values of z and p which is unique for a finite
range of z about z 0. At a particular value of pp the

solution of Eq. (2) bifurcates. This is associated with the
spinodal of the metastable liquid in this mean-field sys-
tem. It occurs at that particular value of z (or p) at
which the linearization of Eq. (2) around the constant
solution has nontrivial solutions. These solutions are of
the form A cos(ko. x), with (ko( ko with ko defined by

s=1+Ppti(ko) -0 and p is the constant solution to Eq.
(2) at the bifurcation point and P(k) is the Fourier
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transform of p((r(). The bifurcation occurs at the
lowest value of z where' 0 for real ko. This means that
ko will be given by the lowest minimum of P(k); e 0
then defines the spinodal.

In order to treat nucleation near the spinodal we take
as our partition function

Z - bp(r) exp[ —pH(p(r))],

where pH(p(r)) is the right-hand side of Eq. (1). The
interpretation is now somewhat different, as p(r) is to be
thought of now as a coarse-grained density in the
Landau-Ginzburg sense. ' The interaction term

d rid rzp( Irl r21)p«i)p«»(p/2) „
is now the interaction between two coarse-grained
volumes of linear dimension y

' and the entropy term
arises from integration over length scales small com-
pared to y '. In the hmit y 0 the functional integral
in Z can be done by steepest-descent methods and nu-

cleation can be described by the methods of analytic con-
tinuation. '2's' The metastable state and the critical
droplet are associated with saddle points of the Hamil-
tonian.

Since the Euler-Lagrange equation obtained by func-

1

tional differentiation of Eq. (1) with respect to p(r) is

equivalent to Eq. (2), one has a connection (via Ref. 18)
between the spatially dependent solutions of Eq. (2) and
the critical droplet. Since the constant solution p ceases
to be a minimum of the free-energy functional above its
bifurcation value, it is natural to identify this point with
a spinodal. %e are interested in the nucleation process
at e-0. Since we know that the solution of Eq. (2) is of
the form p+A cos(ko r) at the spinodal, for small e we
expect only a slight modification to the spinodal solution.
In k space then we expect the nonconstant part of the
solution of Eq. (2) to be a function highly peaked around
ko. More specifically, we shall make the Ansarz that
there are a finite number of vectors koj. , all having norm
ko, around which the solution of Eq. (2) is sharply
peaked. Therefore we assume a solution to Eq. (2) of
the form p(r) p+y(r). Since p is itself a solution of
Eq. (2) we obtain

p d r2 p( ) r~ —rz ) )y(rz)+ in[I + y(r~ )/p]

We now assume that y(r) is small and of the form

qr(r) (/zaire
' ' )fr(r), where fr(r) is a slowly vary-

ing function on a length scale of ko '. This will later be
found to be self-consistent.

The Euler-Lagrange equation in the near-spinodal
limit then becomes

y(r)) P (r)) .
—aPVzyr(r))+ e g aj exp. (i koj" r() — g aj exp.(i kore )) +. . .

r

where a p"(ka)/2&0 and we have expanded P(k)
about ko and the logarithm about 1, keeping only the
dominant nonlinear terms.

In order for Eq. (4) to have a solution when terms
higher than quadratic are ignored we must choose the

ko~ so that the projection of (g aje '~' " )z on

g, aje
' ' ' has norm Ce0. This can only be done in

two dimensions by choice of the ka~ so that they form the
reciprocal lattice basis which corresponds to a triangular
or honeycomb lattice in real space. In three dimen-
sions a regular lattice structure can only be formed if the

koj form the basis of a fcc lattice in reciprocal space and
hence a bcc lattice in real space.

With these choices of koj the function yr(r) is a solu-
tion of

aPV y(r)+ efr—(r)/p Cjr (r)lp2 0.— (5)
This equation is of the same form as the Euler-

Lagrange equation for the droplet profile in nucleation
near the spinodal in Ising models and the liquid-gas tran-
sition. 'z' The solution has the form' qr(r) eg (r/(),
where g-e 'i2 is the correlation length at the spinodal
and g(r/g) 0 as r/( ~. When we combine the
above results the critical droplet near the spinodal is of
the form

y(r) -g,.a,.e '+" eg(r/&).

The interpretation of this result is that the critical
droplet near the spinodal will be a small-amplitude fluc-
tuation with a specific symmetry (bcc in d 3). Since
the k 0 part of yr(r) is of second order in e, the critical
droplet will produce almost no effect in the thermo-
dynamics. For example, we predict the appearance of a
droplet with crystalline symmetry and no latent heat
release. This is in contrast to the classical nucleation
theory and in agreement with the results in Refs. 1 and
3.

The early-growth phase of the spinodal droplets can be
studied with the methods of Langer. ' The details will
be given in a later publication. ' The results are that the
initial stage of growth involves a relatively rapid increase
in the amplitude of the koj modes with a comparatively
slow growth in the density. This would appear in simula-
tions' as an initial period of structure-factor growth
centered about ko with very little change in the thermo-
dynamic parameters, followed by a thermodynamically
measurable change, again agreeing with Refs. 1-3.

Another result relevant to the simulations is that the
rate of droplet growth goes to zero as the spinodal is ap-
proached. This implies that critical slowing down affects
the growth rate. ' This would appear in the simulations
as an increase in time lag between the appearance of
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crystalline order and the release of the latent heat as
s 0. This may have been observed in Ref. 3 and will

be discussed in detail below.
It is of considerable interest with regards to compar-

ison with the simulations and other theoretical calcula-
tions to determine the properties of critical droplets when
one is close to the spinodal but not in the asymptotic lim-
it. This is facilitated by the fact that Eq. (5) is of the
same form as found in the liquid-gas and Ising transi-
tions. One can, therefore, adapt the results of Ref. 13.
We describe the results here and leave the details for a
later publication. 2'

As the quench at which nucleation takes place is
moved away from the spinodal, the barrier to nucleation
of a fcc lattice (which is infinite relative to the bcc bar-
rier height at the spinodal) is reduced but remains large.
Therefore in a large sample, in which many nucleating
events take place, fcc droplets occur but would be rare.
This is consistent with simulations on a system of soft
spheres with a fcc stable crystal phase. The nucleation
and growth characteristics of the bcc droplet are qualita-
tively the same as those at the spinodal, with one differ-
ence. As the quench becomes shallower the droplet den-
sity increases. This increase takes the form of a denser
core in the center of the droplet. The prediction of the
theory as embodied in Eqs. (4) and (5) is that the drop-
let (for these slightly shallower quenches) will have a
core in which the density is higher than that of the sur-
rounding "halo' which is still at the liquid density. The
structure of the droplet, both core and halo, will be bcc.

The final point we make about the properties of this
type of nucleation concerns barrier heights. The free en-

ergy barrier is simple to obtain"' and is proportional to
y [I+ppp(ko)]3 ~~z. This is nor obtained via the
classical assumption of a surface tension which is in-
dependent of quench depth. In fact, the surface tension
vanishes as the spinodal is approached. The implication
is that the classical calculations of free-energy barriers in
Refs. 2 and 3 which obtain barrier heights -kaT will

not apply if the systems have been quenched into the spi-
nodal region as we have been suggesting.

Our approach also provides a possible explanation of
the finite size effects which seem to plague molecular
dynamics simulations of crystal nucleation. This
phenomenon has been explicitly discussed in a very in-
teresting paper by Honeycutt and Andersen3 who com-
pare simulations done on Lennard-Jones systems of 500
and 1300 particles. They find that the critical droplet is
not independent of the system size up to the 1300-
particle systems they measure. They also find that both
the time elapsed until the appearance of the critical
droplet as well as the time between the droplet's appear-
ance and the temperature elevation increase with system
size. They offer as a possible explanation that a diffuse
interface ' makes the effective size of the droplet
larger than the size obtained by their methods. Our re-

suits ~ould also support this interpretation. %e can also
understand the increase in the elapsed times cited above
from our point of view. If, as we suggest, Honeycutt and
Andersen are near a spinodal, critical slowing down
should be an important factor in the dynamical evolution
of the droplets. Small system size will interfere with
the critical aspects and cause a speeding up of the drop-
let evolution. As the system size is increased the finite
size effects should be lessened and time scales would
naturally increase. The effect we are describing depends
on the proximity of a spinodal. It is not, in our view, a
general characteristic of crystalline nucleation but will
be sensitive to quench depth and rate. This suggests that
the results of Refs. 1-3 may not be in conflict with Ref.
4 and that more attention should be paid to these factors
in future simulations.

We have outlined a set of "experimental" facts and
discussed the nucleation theory applicable to a system of
particles interacting with weak long-range repulsive
forces. The properties observed in the simulations are
consistent with the predictions of our model. Such prop-
erties are not predicted in the classical theories which as-
sume a clear distinction between the bulk crystalline part
of the droplet and its surface. Some of the characteris-
tics of the nucleation process we propose are similar to
the properties of droplets found near the spinodals of Is-
ing models interacting with long-range potentials. In
light of this it is important to note that very long-range
potentials in Ising models are not needed to see these ef-
fects in three dimensions. A range of 2-3 lattice spac-
ings sufficed. 9'0 In addition there is some indirect evi-
dence that Lennard-Jones systems behave as if they had
a moderately long-range potential. This includes the
rather diffuse interface between the crystalline and fluid
phases '22 and the small size of the asymptotic region at
the liquid-gas critical point23 of systems which are
modeled reasonably well by the Lennard-Jones potential.
These properties are often exhibited by systems with
moderately long-range potentials.

We wish to stress that we are not claiming that sys-
tems such as Lennard-Jones have spinodals. Our point is
that the "spinodal" singularity affects the nature of the
nucleation process in certain circumstances even when it
is physically unreachable. In this regard we are claiming
that metastable liquids are behaving in a manner analo-
gous to Ising models where this same effect occurs.

Finally, these results suggest several simulations that
might be done to test the ideas we have presented. Mea-
surement of the static-structure factor of metastable
liquids should give some indication of possible spinodal
behavior. Systematic investigation of the time lag be-
tween the occurrence of a droplet with crystalline sym-
metry and the onset of a temperature increase, coupled
with a finite-scaling analysis would also provide a useful
test of the ideas presented in this Letter. These con-
siderations also indicate that the form of the critical
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droplet is sensitive to the depth at which nucleation
occurs. This would imply that more attention should be
paid to the precise quench depth and rate.
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