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Fast Magnetic Dynamos in Chaotic Flows
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A generic structure is proposed for rapidly growing magnetic fields in a class of steady, incompressible
flows which are every~here chaotic with positive Liapunov exponent. In such a flow at high magnetic
Reynolds number R, the magnetic field is approximately aligned everywhere with the dilating direction
of the flow, and may have extremely complicated spatial structure. In the limit of infinite R, the
leading-order growth rate is bounded belo~ by the positive Liapunov exponent of the flow; thus the field
is a fast dynamo.

PACS numbers: 47.65.+a, 05.45.+b, 47.20.Tg

In an electrically conducting fluid in steady flow with

velocity field u(x), the magnetic field satisfies'

a,S-Vx(u~S)+~V'S, V S-o,
where ri is the magnetic diffusivity of the fluid. If all
lengths and velocities are scaled with respect to the
characteristic length L and velocity U of the system as a
whole, then the relative strength of the diffusive term is

measured by s R ' ri/UL, where R~ is the magnetic
Reynolds number of the flow. If the flow is incornpressi-
ble, the curl in Eq. (1) can be expanded and simplified,
yielding the dimensionless equation

(r)&+u V)S B Vu+svzs. (2)

Apart from the diffusive term, (2) is identical to the
equation describing the translation, rotation, and stretch-
ing of material line elements in the flow. Therefore, it
seems plausible that a magnetic field could grow rapidly
in time in a chaotic flow with positive Liapunov exponent
at high magnetic Reynolds number.

Substituting a field of the form B(x,t) Bo(x)e&' into
the dimensionless form of (1) yields (together with ap-
propriate boundary conditions) a vector eigenvalue prob-
lem for Bo and p:

pso~v& (u&&so)+ev Bo.

The taking of the divergence gives pV B0 svzv Ba, so
that for any reasonable boundary conditions V B0=0 au-
tomatically for an unstable [Re(p) &0] eigenmode. An
important question in astrophysical or geophysical situa-
tions is whether, for a given flow, there are eigenmodes
with growth rates of order unity (in this scaling) at arbi-
trarily high magnetic Reynolds numbers. If so, the flow
and the corresponding field are collectively called a fast
dynamo. A particularly simple example of fast-dynamo
action in a chaotic flow on a non-Euclidean manifold has
been given by Arnol'd et al. 3

From the fluid-mechanical point of view, a good can-
didate for fast-dynamo action is the ABC flow, an ex-
act solution of the inviscid Navier-Stokes equations
which is periodic in the box [0,2x), and is chaotic in

certain regions. s 7 Numerical studies have been made of
the evolution of a magnetic field with the same periodici-

ty as the flow. At moderately high magnetic Reynolds
numbers (R~ s '~200), dynamo action occurs with a
growth rate that is rather insensitive to R~. Soward'0
has recently constructed a remarkable example of fast-
dynamo action in a nonchaotic flow that resembles the
ABC flow with one coefficient (e.g., C) zero. In order to
obtain strictly fast growth as a 0, however, Soward
had to introduce weak singularities into the vorticity
field at special points in the flow. Both the ABC simula-
tions and Soward's construction have magnetic fields
with complicated behavior at the dissipation length scale
s'i . This agrees with a result of Moffatt and Proctor"
that the field in a fast dynamo must in general have non-

trivial structure at the dissipation scale in order to des-

troy helicity fluctuations as fast as they are generated.
Theoretical analysis of magnetic fields in flows like the

ABC flow is very difficult, because the regions of chaos
intermingle with regions of regularity in a pattern of fan-
tastic complexity. This paper treats the much simpler
problem of the possibility of fast-dynamo action in a
class of chaotic flows (C flows' ) with idealized ergodic
and stretching properties. Although this is a highly re-
stricted class, I expect the results to be relevant, both
qualitatively and quantitatively, to a large number of
other flows which share the properties of chaos and line
element stretching. By restricting attention to C flows, I
am able to isolate the phenomena associated with chaotic
flow and stretching in a much more complete and trans-
parent way than ~ould have been possible with a broader
class of fIows. On the other hand, by looking at a whole
class of flows, rather than one flow in particular, I can
distinguish between generic phenomena and effects that
might be peculiar to a certain flow.

Kinematic properties of C flows. —Given the steady,
incompressible flow u(x), I define the trajectory X(a,r )
as the location at time t of the particle that was at a at
time zero. The relation between a and X(a,t) can be
thought of as a change of coordinates, with Jacobian
(derivative) matrix M~(a, t ) BX~(a,r )/8aj. I shall as-
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sume that u(x) is periodic in space, with bounded funda-

mental domain D of unit volume; we can therefore think
of u as a flow on D itself, with opposite faces identified
in the natural way that yields a three-torus topology. It
is also assumed that the velocity field is as bounded,
smooth, etc. , as necessary.

The properties of a C flow u(x) that are essential for
our analysis are ergodicity and hyperbolicity. ' The er-

godicity property simply says that the lang-time average
of a given function of space on a typical trajectory equals
its integral over D. The hyperbolicity property implies
that there is a unit-vector field ie(x), called the dilating
vector field, such that

C exp fk t ] « ~
M (a, t ) ee (a ) ~

«C'exp [Xt ] (3)

for all positive and negative t C, C. ', and X are positive
numbers, and A, is known as the positive Liapunov ex-
ponent of the flow.

Equation (3) implies that

M(a, T) ie(a)
r T

exp ~ Ae(X(a, t))dt ie(X(a, T)), (4)

(3) implies that the dilating field satisfies

u Pee(x) -ee Vu(x) —Ae(x)ee(x) (6)

and is therefore smooth along trajectories.
Unfortunately, ee(x) is not smooth in the direction

perpendicular to both u and ee at x. However, id is still
a continuous function of position'; in fact, there exists a

where Ae(x)=ie (ed Vu). By use of the ergodicity
property, the positive Liapunov exponent can be identi-
fied as

wT I

lim — Ae(X(a, t))dt Ae(x) d3x. (5)
T ~7~0 4 D

number E related to C,C' such that

(id(y) —ie(x) (
«F. (x —y('t'

for any x,y sufficiently close together in the domain D.
In order to use eg as an ingredient in the construction of
a solution to the physical magnetic field problem, it must
be smoothed over the smallest length scale likely to ap-
pear in the solution, which is the dissipation length a'
Let

r

e(x) -„e '"~(e '"Ix —
yl )d'X id(y) (8)

where s(x) is a smooth function that is positive for
I0«x (1, zero for x~ 1, and has 4tr f x2s(x)dx 1.

Equation (7) implies
~
e(x) —ee(x) ( O(e' ), and Eqs.

(5) and (6) imply

u Ve e Vu —A(x)e+O(e'~6),

where A(x) e (e Vu), and

J A(x)d x A, +8 A, (io)
D

where X'(e) is order 1 as e 0.
Magnetic field structure. —Equation (6) shows that if

a material line element in a diffusionless fluid is initially
aligned with ie(x) at its starting point, then it remains
so aligned as it moves through the flow, and its length in-
creases exponentially as t ~. Indeed, for almost ali
initial orientations, a material line element will tend to
align with ie as t ~.' This suggests that a good can-
didate for a fast dynamo in a fluid with dimensionless
diffusivity e would be a field closely aligned with the
smoothed field e(x) at every point. So let us seek a field
of the form

B(x,t ) - [P(x)e(x)+b(x)]exp[(a+ cr')t ],

with the functions B,p, b periodic in the same domain D
as the flow. b and cr' are corrections to the leading-order
solution, expected small as e 0. Insertion of (11) into
the induction equation (2) yields

e(a+u V)P+Pu Ve+cr'Pc+(o+o'+u V)b Pe Vu+b Vu+e(eVzP+2VP Ve+PVze)+eV2b. (i2)

(o+u V)P A(x)P+eVzP (i3)

For small 8, the diffusive te~s are negligible except
I

at scales comparable with the dissipation length e't2. At
these scales, any significant variations in the field must
be due to p(x), since e(x) varies by at most O(e'ts) over
the dissipation length. Consequently, the term eV p
dominates the other diffusive terms by a factor of e
We therefore can expect to get a good description of the
field at all length scales by keeping eeVzp as the only dif-
fusive term in the leading-order problem, with the
corrections b and cr' expected to be on the order of e'ts as
e 0. By use of (9), e can be eliminated from the re-
sulting leading-order equation, leaving a scalar eigen-
value problem for P and o,

To determine the nature of the most unstable modes of
(13), consider a time-dependent field p(x, t ) satisfying

(8 +u V)P-A(x)P+eVzP. (i4)

Equation (14) has the property that if p is initially
everywhere positive, then it remains positive everywhere
for all future time. For such a solution, we can divide
(14) by p and integrate over D. Referring to (10) for
the integral of A and applying the divergence theorem
yields

d t

dt
lnp(x, t )d'x -Z+ e J ( Vinp

~

'+ e'"X'. (15)
D

Integration in time and use of Jensen's inequality' then
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implies that

J" P(, )d' SC p[(X+ '"Z') ], (16)

where K depends only on the initial field.
Although (16) places a lower bound on the growth of

P, it is not necessarily a close bound, since small-scale
variations in P may lead to large values of e(VlnP( .
Taking the dot product of (2) with 8(x,t ) and averaging
over D yields

fO

[8(x,t) i'd'x ~2S „ i 8(x,t) (2d'x, (17)

where S is the maximum value of the scalar strain rate
n (i Vu) over all unit vectors ft and all points of D.

The observations above imply the existence of an
eigensolution of (13) whose eigenfunction P(x) is real
and everywhere positive, and whose eigenvalue cr is real,
with X+a' X'~cr~S. The spatial structure of the cor-
responding magnetic field is 80(x) P(x)e(x)+0(a' ).
To leading order in e't, the growth rate is bounded
below by X and above by S.

In the simple dynamo of Arnol'd et al. ,
3 the leading-

order field constructed here is actually the exact eigenso-
lution to the full vector eigenproblem, with X o S.

Discussion —Since. numerical and theoretical' "in-
vestigations indicate that typical fast-dynamo fields have
complicated small-scale structure, it is worthwhile to
give a brief intuitive argument for why the fast dynamo
constructed in the last section is also likely to possess this
kind of structure. Consider a scalar p(x, t) that evolves
according to the equation

g(t) -A(((t))g(t), g(0) -1,
dt

over all allowed paths g(t)
A crude analog of the g process is the stochastic dif-

ferential equation

d c(t) -l(t)c(t), c(O) -1, (2o)

where l(t) is a stationary Guassian random function
with mean (l (t)) l and autocorrelation

([i(t, ) -il[i(t, ) -i]&-L, (t& —t2).

L(t) is assumed to decay rapidly as t + C)c), so that
l(t) has a finite correlation time.

(20) has the explicit solution
wt

c (t) -exp l (s) ds .i40

bound to the growth rate in the limit a 0. The follow-

ing argument may make this result seem more natural.
The Green's function for (14) can be written formally as
a "path integral"

G(xrl a, ) -(exp „A(g(s))ds

in which the angle brackets denote the expectation taken
over all Brownian particle paths g(s) with g(0) -a and
g(t) x. The Brownian paths are material particle tra-
jectories with superposed random displacements to ac-
count for the small but finite diffusivity a. Thus,
G(x, t

~
a) can be regarded as the expectation of the sto-

chastic differential equation

(8, +u V)y-g(x)+aV2y,

g(x) -A(x)+a(vinP )' —o.

The Liapunov exponent of the system is defined by

1
ot

lim —inc (t) lim — l (s) ds,t~ OO jt' t~~ f ~0 (21)

y can be interpreted as the density field of a passive con-
taminant which is steadily injected into D by the source

g, stirred and mixed by the flow, and eventually dissi-

pated by molecular diffusion. The form of g has been
chosen so that p(x, t ) approaches lnp(x) as t

Now, chaotic flows are typically highly efficient at
mi~ing passive contaminants. Regions of concentration
variation are continually being stretched and folded by
the flow, creating structures at smaller and smaller
scales until they are efficiently damped by molecular dif-
fusion. ' In the large-t limit of (18), this process occurs
continuously, with a steady cascade of contaminant mov-

ing from the largest scales at which it is injected, to
smaller and smaller scales down to the dissipation length.
On general grounds, therefore, we can expect the long-
time limit of p(x, t ), and therefore P(x), to have struc-
ture at all scales. This behavior will be reflected in an

equally highly convoluted structure for the resulting
magnetic field.

A surprising feature of the foregoing analysis is the
conclusion that the Liapunov exponent X, is a lour

which exists and equals l with probability 1. However,
the expectation of c(t) is

(
pt ~ OO

exp l(s)ds =exp l+ — I.(r)dr t (22)
,4 0 4 —eo

as t . Thus the existence of finite-time correlations
in l(t) results in a growth rate of the expectation of c(t)
that is larger than the Liapunov exponent. This demon-
stration qualitatively explains how the Green's function
G(x, t

~ a), and therefore the field P(x, t ), can grow at a
rate higher than the Liapunov exponent.

Conclusion I have .c—onsidered the possibility of
fast-dynamo action in a class of steady, chaotic flows
with idealized ergodic and stretching properties. Using a
mixture of ideas from magnetohydrodynamics and
dynamical systems theory, I have constructed the
leading-order approximation to a magnetic field that is
rapidly amplified in a given C flow. The construction
makes good physical sense and contains the model of
Arnol'd et al. as a special case. The construction also
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gives a natural explanation for the origin of the complex
small-scale structure seen in the simulations of magnetic
fields in the ABC flow9 and Soward's construction, 'o and
predicted by Moffatt and Proctor. "

The complexity of the dynamos even in the simple sit-
uation considered here presents a daunting prospect for
the study of dynamos in more complicated and more
realistic flows. Nonetheless, it is anticipated that the in-
creased understanding of fast dynamos in these flows
will lead to insights into the more important problems of
geophysical and astrophysical magnetohydrodynamics.
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W. V. R. Malkus. I would like to acknowledge financial
support from the National Science Foundation and the
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