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New Quasi-Landau Structure of Highly Excited Atoms: The Hydrogen Atom
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A basically new structure of quasi-Landau resonances is discovered with the magnetized hydrogen
atom around the ionization threshold. The resonances are theoretically rationalized by classical-
trajectory calculation. In energy spacing and corresponding resonance time they form a highly regularly
organized series with, classically, an infinite number of members.

PACS numbers: 31.60.+b, 32.60.+i

The physics of highly excited atoms around the ioniza-
tion limit, that is, in the quasi-Landau (q-L) or strong-
field-mixing regime' is still an unsolved fundamental
problem of general importance,? with implications well
beyond atomic physics.> It is unsolved even for the H
atom, that is, with the Hamiltonian in simplest form:
H =p?/2+Bm +B*p*/2—1/r, where =B/(4.7x10° T),
in atomic units. Until recently, it had been generally ac-
cepted that the atomic q-L spectrum is governed by one
resonance only, previously discovered by Garton and
Tomkins.* Characterized by the energy spacing
Ag =y ho, (0. =eB/m,), the energy-dependent factor
71 of this resonance has a value, for instance, at the ion-
ization limit (E =0) of y;0=1.5. The resonance is ex-
plained by periodic two-dimensional motion of the elec-
tron perpendicular to the field in the z =0 plane with
period T'1o=27/7100,..°

However, in first experiments with the H atom anoth-
er new type of q-L resonance with y;0=0.64 has been re-
cently observed, resulting from a three-dimensional
motion of the excited electron out of the z =0 plane.®
Though those experiments suggested the existence of
even more resonances their structure and significance
remained fully obscure. In this work we have discovered
the resonances to form a series of strikingly simple and
regular organization, not previously anticipated or
predicted.

In principle, the same experimental technique as in the
previous work has been employed, however, with the de-
cisive difference of about five-times-higher spectral reso-
lution. Balmer spectra of the H atom with final magnet-
ic states |m/) are excited in two steps with two
(vuv+uv) pulsed tunable lasers: H(ls,m&=0)
+vuv light— H(Q2p,m’) +uv light— H(m/). In the
first step, pure Paschenack levels |2p,m’) are prepared
by tuning the vuv laser with appropriate polarization to
individual transitions. From these levels, spectra have
been taken at B =5.96 T around the ionization limit in
the range —30 cm~!<E < +30 cm ™! by scanning the
uv laser. Figure 1 shows spectra of transitions
|2p,m'=0)— |m/=0) and |2p,m'=—1)— |m/
= —1). The zero point in the energy scale (E =0) indi-
cates the field-free (B =0) ionization limit. The posi-
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tions of energies marked by Ep and Ejp refer to the
linear Zeeman shift Ep =m’heB/2m, and the Landau
zero-point energy Ep=(m/+|m/| +1)- heB/2m,.
(Since spin and orbit are decoupled |m’ =—1)— |m/
=—1) and |m'=+1— |m/=+1) transitions yield
the same spectra, except for a corresponding linear shift
in the energy scale.)

In contrast to the previous experiments, the present
high-resolution spectra have lost virtually all regularity
and show no q-L modulation. With their complex irreg-
ular structure of sharp lines they appear “chaotic.” (It
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FIG. 1. Excitation ionization spectra of H-atom Balmer

series around the ionization limit in a static homogeneous mag-
netic field. Field strength B =5.96 T; spectral resolution 0.07
cm™'; Ep, linear Zeeman shift; E;p, Landau zero-point energy;
E =0, field-free ionization limit. (a) Initial state |2p,
m'=0)— final state |m/=0), even parity. (b) Initial state
| 2p,m!= —1)— final state | m/=—1), even parity.
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FIG. 2. Fourier-transformed spectra (a) and (b) in Fig. 1.
Plotted is the absolute value squared. Abscissa with time scale
normalized in units of 7. (see text).

should be noted that also in these spectra the resolution
is still experimentally limited; the width of the narrowest
lines is fully given by the uv-laser bandwidth.) Reso-
nances are, however, more clearly exhibited in the time-
domain Fourier-transformed spectra. They are plotted
in Figs. 2(a) and 2(b) on a time scale normalized in
terms of T/T,., where T, =2n/w.=6.0%x10"12 5 is the
cyclotron period. Clearly observable resonances are
marked by integers, v, in solid circles. Table I shows the
experimental values of T¢*/T. and y¢*, related by
T. /TS =y*. The v-labeled resonances indicate a strik-
ingly systematic organization: Except for the first ones,
i.e., v=1 and v=2, nearest-neighbor resonances show,
within experimental uncertainty (AT$* =0.057,), a
practically constant spacing, Ty* — Ty~ =T, i.e., just
the cyclotron period. Positions of resonances not ob-
served yet postulated from this relation are also indicated
in the spectra (broken circles) and listed in Table I. The
first few members evidently carry an essential fraction of
the spectral oscillator strength. The resonances belong-
ing to this v series are called in the following “regular”
or “v type.” The series can be rewritten in the form
TS =(v—65)T,, where v is a running integer and the
quantities 83§ = 0.3-0.4 account for the defects from v
of each resonance. The known resonance (y;0=1.5) and
the recently observed one (y=0.64) are recognized to
be simply the first two members of this regular reso-
nance family. Further resonances not fitting this se-
quence, however, clearly present in the Fourier spectra
are marked by an asterisk. Their structure and nature
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TABLE 1. T&/T.. Experimental resonance times (7¢*)
normalized to cyclotron period T.=6.0x1072s at B =5.96 T
for final states | m/=0) and |m/=—1). T®/T.: Normalized
theoretical resonance time of the vth trajectory at E =0. 0,¢:
Starting angle of the vth trajectory at E =0. Ae. =haw.. At
Energy spacing of the vth quasi-Landau resonance. 6,0 given
by Tvo=(v—38,0)T..

6,0 m/=0 m/=-—1 Yvo ™=
v (deg) T&/T. T&IT. TR/T. Aswldee 8o
1 900 0.66 e 0.67 1.50 0.33
2 538 . 1.57 1.57 0.64 0.43
3 428 2.58 2.64 2.58 0.39 0.42
4 3713 3.60 (3.49) 3.59 0.28 0.41
5 339 4.62 4.57) 4.60 0.22 0.40
6 314  (5.60) 5.61 5.61 0.18 0.39
7 295 6.66 6.73) 6.62 0.15 0.38

remains an open problem to be solved by more precise
experiments.

The regular-type resonances can be physically ration-
alized and explained by classical periodic orbits of the
electron on closed trajectories starting at and returning
to the proton as origin with an orbital recurrence-time T
characteristic for each v-type resonance. This approach
is in essence the classical approximation of the time-
dependent wave-packet treatment previously applied by
Reinhardt’ to the (v=1) resonance in the z =0 plane.
As shown there, even a single return with recurrence
time T of the wave packet suffices to produce a reso-
nance with energy spacing Ae¢=2rmh/T. The classical
treatment is based generally on the WKB condition®
which is valid, except at the proton and turning points, to
high degree, since the excited electron moves mostly in a
space and potential of practically macroscopic dimen-
sions. The breakdown of this classical approximation is
indicated below.

As previously,® trajectories are calculated, irrespective
of the initially excited final-state orbital angular distri-
bution, with the Hamiltonian (in cylindrical coordinates)

H=(p}+p2+p}/p®)/2+Bp,
+B2p%2— (p*+2z2)~ 12

The ¢ motion can be separated off, i.e., the angular
momentum p, is quantized with p,-mf, leaving the
nonseparable (p,z) part. The special case of motion in
the z =0 plane (6=90°) can be solved for m/ =0 analyt-
ically,’ yielding specifically at E =0 the known q-L reso-
nance with recurrence time Ti9=2n/y100. (710=1.5).
Trajectories out of the z =0 plane are integrated numeri-
cally with initial conditions of p and z at time ¢ =0
chosen as p(t=0) =0 and z(zt =0) =0. This choice of
initial conditions is physically suggestive since the elec-
tron is excited from the 2p state confined to within a few
Bohr radii at the proton. The starting angle 8 between
the z axis and the initial velocity vector at the proton,
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FIG. 3. (a),(b) Calculated closed trajectories of electron motion at energy E =0, corresponding to the first seven resonances
v=12,...,7. Final state |m/=0). Projection onto (p,z) coordinates. E =0: Potential of field-free ionization threshold. (c)
Closed trajectory of v=3 type at E =0 in projection onto the z =0 plane. Final state | mf=0).

and the excitation energy E are free parameters. We
have performed calculations for states m/=0 and 1 at
various energies around the threshold and at angles be-
tween 0° to 90°. The distance from the origin at which
the electron returns for the first time to the z =0 plane is
a continuous function of 6 and becomes zero at distinct
angles 8,(E), resulting in closed orbits with correspond-
ing recurrence times T, (E).

First we present and discuss results of calculations at
E =0. Figures 3(a) and 3(b) show the first seven trajec-
tories (v=1,...,7) for m/=0 in projection onto the
(p,z) coordinates. Figure 3(c) presents, as an example,
the v=3 trajectory projected onto the z =0 plane. The
|m’| =1 trajectories are nearly the same as the m/=0
ones, except close to the z axis where, as a result of the
centrifugal barrier they pass closely around the z axis at
a minimum distance given by pmin= |m/|(]z|/2)2
(z =0 projections of the common v=1!" and of the
v=25 trajectories have been shown previously.) The
calculated recurrence times 7,9 (normalized again to
T.), the corresponding 7, factors, and defect quantities
8,0 of the trajectories are given in Table I. They agree,
within experimental precision, quantitatively with the ex-
perimentally observed ones, supporting the validity of the
classical approximation and proving that the regular res-
onance series indeed is governed by the relation
T,o=(v—28,0)T.. Conversion of the recurrence time to
the energy spacing yields an equally simple relation
Ag,0=Ag./(v—38,0), Ae. =hw.,. The resonances of this
“regular” type thus form, classically, a series with an in-

finite number of members converging with v— o to
A€wg=0. The defects 8,9 vary systematically with v,
getting smaller with larger v. Calculations for trajec-
tories up to v=30 indicate that the defects converge to a
limit dg==0.3. The regular behavior of the v-type reso-
nances has a simple physical reason: The orbits grow
with v by one additional cycle into the z direction where
the motion becomes increasingly purely cyclotronlike
with period T,. The term 6,07, simply accounts for the
action of the Coulomb field, the relative effect of which
decreases with v.

As to the energy dependence, trajectory calculations
as a function of E reveal an unexpected general property
of the v-type resonances: Except for the known v=1
resonance for which trajectories exist at all positive and
negative energies, all v=2 trajectories are found to
degenerate at distinct negative “cutoff’ energies,
E=—|E,cu|, to a linear motion exactly along the z
axis, on which the potential is purely Coulombic. De-
pending on the field strength each resonance-type v has
a characteristic cutoff shifting systematically with v to
higher energies and converging with v— 0 t0 E o ¢yt =0.
This behavior is illustrated in Fig. 4 by the v=2 type at
B =6 T as an example. The trajectories are drawn at
energies differing by constant increments of AE =5
cm ™!, Obviously, the cutoff regime is where the classi-
cal treatment ceases to be applicable to the regular v=2
resonances.

As to the intensity distribution of the resonances, it
remains an unsolved problem. Some distinct features,
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FIG. 4. Energy dependence of closed trajectories of v=2
type in (p,z) projection. Final state | m/=0). Equidistant (10
cm™!) potential lines. E =0: Field-free ionization potential.

vo: Trajectory at E =0. Trajectories drawn in energy incre-

ments of 5cm ™.

particularly the missing of the v=2 and v=1 resonances
in the respective spectra of Figs. 2(a) and 2(b) can, how-
ever, be qualitatively rationalized on the basis of the
time-dependent wave-packet model.” There the intensity
of a resonance will depend on the angular distribution of
the final-state hydrogenic partial wave Y, (8,0). In the
| d;m/= —1) spectrum Y;(6,¢) has a node in the z =0
plane, i.e., just at the starting angle (8; =90°) of the
v=1 trajectory. Similarly, the partial waves of
's;mf =(0) and Id;mf =()) involved in the excitation of
the | m/=0) spectrum have relatively small amplitudes
at the starting angle 6,9 =>53.8° of the v=2 trajectory.
The spherical harmonic Y5(6,) has a node at
cos@=1//3 (§=54.7°) close to the v=2 starting angle
and the amplitude of Y(8,¢) is altogether relatively
small since the ratio of the total excitation cross sections
of the s and d waves is 1:12.8.1!

In summary, a fundamentally new structure of q-L
resonances organized systematically in a simple regular
series with, classically, an infinite number of members
has been discovered. The resonances are quantitatively
accounted for by classical trajectory calculation reveal-
ing three-dimensional electron orbits of Lissajous form.
Theoretical analysis of the energy dependence shows that
the three-dimensional resonances degenerate, classically,
at distinct negative cutoff energies to one-dimensional
electron motion along the field axis, indicating the
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breakdown of the applied classical approximation.

In conclusion, we wish to add that the classical ap-
proach presented can be straightforwardly extended to a
semiclassical quantitative treatment by Einstein-
Brillouin-Keller (EBK) calculation of multidimensional
nonseparable systems.!? After separation of the con-
served ¢ motion, the three-dimensional trajectories are
quantized by employing the Bohr-Sommerfeld condition
generalized to two dimensions: f(v)(p,,dp+pz dz)
=2nn,h, where the quantum number n, represents the
number of nodes of standing de Broglie waves along the
respective closed v-type classical trajectories. Through
the Hamiltonian n, is a function of £ and B. Numerical
solution of the line integral for all v-type trajectories
with £ and B as parameters yields the resonance spec-
trum n,(E,B), including, in particular, the most chal-
lenging regime around threshold where no exact quan-
tum mechanical solution is known.
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FIG. 4. Energy dependence of closed trajectories of v=2
type in (p,z ) projection. Final state | m/=0). Equidistant (10
cm™!') potential lines. E =0: Field-free ionization potential.
vo: Trajectory at E =0. Trajectories drawn in energy incre-

ments of 5 cm ™.



