
VOLUME 57, NUMBER 22 PHYSICAL REVIEW LETTERS 1 DECEMBER 1986

Scaling of the 0++ Glueball Mass in SU(1V') Hamiltonian Lattice Calculations
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We show that a variationa1 calculation of the ground-state energy of SU(X) Hamiltonian lattice

gauge theories concurrently gives an estimate of the 0+ glueball mass. Monte Carlo calculations in

three spatial dimensions for N 3, 4, 5, and 6 indicate that the resulting glueball mass begins to scale
for %~5.

PACS numbers: 11.15.Ha

Although numerical simulation of lattice gauge theory
is currently performed extensively in the Lagrangean'
form, the alternative Hamiltonian formulation2 is of
direct usefulness in assessing the low-lying spectrum of
the theory. In this Letter, we demonstrate that a very
simple variational estimate of the 0++ glueball mass in

SU(1V) lattice gauge theory, calculated in the Hamil-
tonian form, appears to exhibit scaling for N~5. The
fact that scaling can manifest itself more easily for 1V

large suggests that many ideas of I/1V expansion may
have practical importance for lattice calculations.

We consider the Kogut-Susskind SU(1V) lattice Ham-
iltonian2 in the form

H ~ g ,'Ef'Ef+ —g 1 — Tr(U +Ut)
2 2W 1

0 4 2~ P P
I p

(1)

where the color-electric field operators are first-order
differential operators such that Et'Ui bt i T'Ut. It has
been noted for some time ' that a reasonable trial wave
function for the lattice ground state, with a single varia-
tional parameter A, is

&
—(Ef In@o)(Et'In@o)) & —,

' EPEI'In@o), (4)

which follows from &eo I
EN'f I @o& &Ef@o I E|'@o&,

and that T'T' (1V —I)/21V. As a corollary, (4) also
implies that there are two operators,

P (1/1V~)(1/21V)Q Tr(Up+Up~), (5)

al energies given by @0 were in even better agreement
with the exact results than in the case of SU(2). This
suggests that 40 may become a better trial function as N
increases.

With 4o as the trial function, the variational ground-
state energy per plaquette per gluon degree of freedom is

given by

so &H)

1V, (1V' —1)

~,'~P(~)+g' [I -P(~)], (3)1 1 2N
ag N —1

where &0&—=&@o I 0 I@o&/&@o I@o&. 4= I/1Vg, and P(A)
is the plaquette expectation value defined below. In
deriving (3), we have used the fact that

(2) andexp[A1V 2 g Tr(Up+Uzt)].

This trial function is exact in the strong-coupling limit
but is incorrect in the limit of weak coupling. However,
since one is only interested in the scaling region rather
than the extreme weak-coupling limit, this known defect
may not be significant. A priori, for nontrivial cases, it
is not known whether any physical variables calculated
on the basis of this trial function can exhibit scaling. In
the past few years, exact Monte Carlo Hamiltonian cal-
culations ' in the case of U(1) and SU(2) have gen-
erally confirmed the adequancy of (2) for estimating the
lattice ground-state energy. More recently, we have
completed an exact Monte Carlo calculation" of the
SU(3) ground-state energy and found that the variation-

2

P -, g EP—+Tr(U +U,'), (6)
1V,(1V'-1),.

whose expectation values with respect to 4o are identi-

cal,

&P) -&P&—=P(W).

The importance of the use of P for estimation of P(A) in

a Monte Carlo calculation was first noted elsewhere, '

and will be further emphasized below. Minimization of
so with respect to A yields

P(~)
41V' aP'(a) '
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In arriving at (11), we have again used (4) and the fact
that P'(A) 2N2N&[&P2) —&P)2]. The frontal attack of
evaluating (10) directly in a Monte Carlo calculation is

disadvantageous because the variance (P2& —(P)2 is

highly sensitive to correlation effects and its variance
cannot be reduced independently. In actual calculations,
we find it extremely difficult to determine the glueball
mass from (10) with any precision. In (12), we have a
useful relation which gives the glueball mass directly in

terms of the variational parameter A(g). Determination
of A (() by fitting of the energy minima with parabolas
gave reasonable results. However, after exploring vari-
ous alternatives, we find it simplest to calculate P(A) for
a set of values A;, to obtain P'(A) via numerical dif-
ferentiation, and to determine so and M as functions of g
parametrically via (3), (7), and (11). In order to carry
out this program, we must be able to evaluate P(A) with
fair accuracy. This is fortunately feasible with the help
of the alternative operator P.

In Monte Carlo calculations, although P is a more
complicated operator to evaluate, its variance is much
smaller than that of P. To evaluate P, note that if
U~ U&U2U3tvj, then, since E'Ut —UtT',

E;Tr(V, +V,') - E:Tr(V,+V,')—
-Tr[T'(U —Ut)]

E;Tr(V, +V() -Tr[T'(V„—Vt, )],
E3 Tr(vz +U~~) —Tr [T'(U&4 Vtp4 )], —

where &„=Vt&,V»nd U„=—VJ&,V4. F«N-3, 4,5,
we evaluate P(A) &P& for eighteen values of A;

0.10(0.02)0.44 (this notation indicates values from
0.10 to 0.44 with intervals of 0.02). For N 6, the simi-
lar range is covered by A; ~36 ( —,', ) I. On a 63 lattice,

which determines A (() implicitly as a function of (.
If 4o is a good approximation to the exact ground

state, then the 0++ glueball mass can be estimated by
minimization of

W -E, —E,=—,
' &[F',[H,F]i&l&F'F &

with respect to F, ~here I' is an operator such that
@i-F@o is a trial excited state orthogonal to @o. A
simple form for F, which is exact in the strong-coupling
limit, is F P —(P). In this case, (9) is greatly simpli-
fied to
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FIG. 1. The plaquette expectation value for SU(3) to
SU(6) as a function of the variational parameter A calculated
with use of the operator P as defined in Eq. (6). The statistical
errors are too small to be sho~n.

using the standard Metropolis' algorithm, we measure
(P) for a sequence of A; values by averaging forty block
averages of 100 sweeps each. Initially, 400-500 s~eeps
were used to equilibrate the lattice from a cold start;
subsequently, depending on A;, 300 to 500 sweeps were
used for reequilibration between successive values of 8;.
For N ) 3, generation of the updating SU(N) matrix is
very time consuming; we therefore hit each link only
once per sweep. For SU(3), the variance of P is smaller
than that of P by more then an order of magnitude near
A = 0.10, and remains a factor of 2 smaller near
A =0.40. The resulting statistical errors for P(A) are
typically less than 0.001 over the designated range of A
for all gauge groups.

To perform the numerical differentiation for P'(A),
we smoothed the Monte Carlo data with cubic splines
and extracted values for P(A) and P'(A) at
A; 0.12(0.01)0.42 and A; —,', ( —,', ) —,", for SU(6). The
smoothing was very minimal, and was needed only for
extraction of intermediate values and derivatives. We
have checked that the original data for P(A) are virtual-
ly unchanged by the smoothing process and that the
values for P'(A) thus obtained for A; 0.12(0.02)0.42
agree with the more explicit approximation

P'(A;) -[P(A;+i) -P(A;-&)]i'[A;„-A;,]
to three significant digits.

Our results for P(A) for SU(3) to SU(6), augmented
by interpolated values, are shown in Fig. 1. The statisti-
cal errors involved are too small to be shown. The con-
vergence of P(A) toward a large-N limit is plainly visi-
ble. Figure 2 gives the corresponding derivatives. This
is just the "specific heat" of a three-dimensional
Lagrangean lattice gauge theory. The subtle changes in
slope are now clearly unmasked. The location of the
maximum slope appears to have converged to A =0.4
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are capable of being consistent ~ith the continuum limit.
The fact that scaling appears rather easily for N ~ 5 sug-
gests that one may profitably approach the physical case
of SU(3), even for Monte Carlo calculations, from the
large-N limit. Of course, it is also very possible that a
more refined variational estimate, with improved @o and

F, can directly produce a scaling glueball mass for
SU(3).
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