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Possible Instability for Shear-Indlieed Order-Disorder Transition
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A simple fluid in uniform isothermal shear flow is studied for conditions used in recent nonequilibrium
computer simulations. The short-time dynamics for the local conserved densities is found to be unstable
at large shear rates for wave vectors near the peak of the structure factor. The critical shear rates ob-
tained are similar to those for an order-disorder transition observed in the computer simulations.
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Nonequilibrium computer simulations of a simple
fluid in uniform shear flow have uncovered a number of
unexpected properties for states far from equilibrium.
One of the most interesting and least understood is a
transition from the disordered fluid phase to an ordered
fluid phase, as reported recently by Erpenbeck' for hard
spheres and by others for continuous potentials. 2 The or-
dered phase consists of layers (analogous to smectic
liquid crystals) normal to the velocity gradient. Further-
more, particles within a layer are concentrated in tubes
along the direction of flow, and these tubes are hexago-
nally packed relative to adjacent layers. The control pa-
rameter is the shear rate, a, and the transition is signaled
by a dramatic decrease of the shear viscosity at the criti-
cal shear rate. The system considered by Erpenbeck is a
hard-sphere fluid at two "liquid" densities, n' 0.88 and
0.704, where n» no and o is the hard-sphere diameter.
The range of shear rates considered was 0&a' & 1.6,
where a* ato and to is the Boltzmann mean free time.
Such shear rates are many orders of magnitude larger
than typical laboratory values, but analogous shear-
induced ordered phases are observed in complex colloidal
suspensIons.

One possible explanation for the transition in simple
fluids is a hydrodynamic instability. A perturbation
analysis of the hydrodynamic equations for shear flow
indicates stability up to a -0.05; this is consistent with
the computer simulations, where the transition occurs for
shear rates an order of magnitude larger. However,

Kirkpatrick and Nieuwoudts have recently reported an

instability in a kinetic theory model for the domain of
large wave vectors and shear rates for which the order-
disorder transition is observed. Their values of the criti-
cal shear rate and its density dependence are in qualita-
tive agreement with those for the order-disorder transi-
tion. The purpose here is to report the results of a stabil-

ity analysis that is similar in spirit, but with a somewhat
more complete analysis of the hydrodynamic modes.
The description is obtained from the short-time dynam-
ics of the stationary-state time correlation functions,
with the Lees-Edwards boundary conditions and ther-
mostat forces used in the computer simulations. The im-

posed shear is found to induce qualitative changes in the
hydrodynamics. For example, at large wave vectors
there is a range of shear rates for which the heat mode
and one of the shear modes become a propagating pair.
At larger shear rates this pair is unstable. The minimum
shear rate for instability occurs at wave vectors near the
peak of the static structure factor and directed along the
velocity gradient. The minimum values for this instabili-

ty also occur at shear rates similar to those for the
order-disorder transition.

The hydrodynamic equations for a simple fluid are the
usual macroscopic local conservation laws for mass, en-

ergy, and momentum, supplemented by constitutive
equations for the irreversible energy and momentum
fluxes. For wavelengths long compared to the mean free
path the latter are given by the Navier-Stokes forms.
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The usual form also assumes that the wavelengths are
large compared to the atomic correlation length, so that
the susceptibilities can be approximated by correspond-
ing thermodynamic derivatives. However, at high densi-
ties the mean free path is smaller than the correlation
length and it is possible to study phenomena with wave-

lengths comparable to the correlation length. In this
case the effects of the correlation length on the suscepti-
bilities and transport coefficients must be accounted for.
Such generalized hydrodynamic equations have been dis-
cussed recently by several people to describe the dynam-
ics of equilibrium fluctuations, and the calculation
here is an extension to the stationary state for shear flow.
The most interesting consequence of this generalization
for our purposes is a softening of the heat mode by
several orders of magnitude near the peak of the struc-
ture factor. The existence of this soft mode, although al-

ways stable in equilibrium, provides a potential source
for an instability under external constraints. The calcu-
lations here and in Ref. 5 identify a mechanism whereby
the imposed shear further softens the heat mode until it
becomes unstable.

In the computer simulation, the Lees-Edwards bound-

ary conditions induce viscous heating as a consequence
of the average shear flow. ' " To maintain a steady
state additional nonconservative forces are introduced to
extract heat at the same rate as it is produced by the
shear. It is possible to show'2 that the corresponding
macroscopic local conservation laws for mass, energy,
and momentum density (denoted as p, u, and p, respec-
tively) admit an exact solution with constant density and
internal energy density, and a flow velocity, vo,

The shear-rate tensor, a,j, has been defined so that the
flow is along the x direction with a constant gradient, a,
along the y direction.

To study the stability of uniform shear flow, we look
for possible growth of small deviations in p, u, or p from
their steady-state values. A Fourier representation for
the deviations of the hydrodynamic variables from the
uniform shear state is denoted by fy~(k, r )1. For a wide
class of initial conditions, the dynamics is determined by
the steady-state time correlation functions for the local
conserved densities,

yi, (k,t) gk G,p(k, t;k', 0)yap(k', 0),

Gp(k, ; r'k)0=+k-C, (k, r;k",0)C p' (k",0;k',0), (2)

C p(k, r;k', 0)—=(y, (k, r ) [yp(k', 0) —
& yp(k', 0)&]&.

The angular brackets denote an average over the station-
ary-state ensemble for uniform shear flow. Equation (2)
expresses the relationship of linear stability for that flow
to the decay or growth of fluctuations. The specific vari-
ables, y„chosen here are the Fourier transformed mass,
energy, and momentum density measured in the rest

frame (i.e., as functions of the relative momentum,
p„';—p„; —ma;Jq„j). Extending standard techniques for
equilibrium correlation functions to the case of interest
here, we obtain a formally exact set of linear equations
for fy, l,

ay&. (k, r ) +g, ~.,(k,k';r )y„(k',r ) =0.

Our primary approximation is to restrict attention to the
short-time structure of this equation by evaluating

X,p(kk ,;t') at t 0+. A special feature of hard-sphere
fluids is that the short-time dynamics includes finite
momentum transfer, which typically requires a finite
time to develop for fluids with continuous potentials.
Consequently, short-time approximations for hard
spheres are often applicable even in the hydrodynamic
domain. No restrictions on the density, wave vector, or
shear rate are imposed in this limit. Our main justifica-
tion for its use here is that it is known to be good approx-
imation in equilibrium, and we expect that this qualita-
tive feature should extend to the stationary state.

Considerable simplification occurs in this limit, and

Eq. (3) has a local form

—a;~k; y~, (k,t)+M,~(k, a ) V~~(k, t ) -0.a

We look for an instability associated with k along the
direction of the velocity gradient (k, k, 0). In this
case the "hydrodynamic" modes are determined from
the eigenvalue problem

M,~(k,a)yt' (k,a) A,
' (k,a)y, ' (k,a).

The eigenvalues, A, t'&(k, a), are either real or complex
conjugate pairs. An instability is indicated when any of
the real parts of A,

t'& (k,a) vanish. The matrix elements
M,p(k, a) can be reduced to fusctionals of the one-,
ttro-, end three-tntrthde reduced distribution functions
for the stationary state. Three-particle correlations are
then expressed in terms of pair correlations by use of a
nonequilibrium stationarity constraint. The range of
wave vectors relevant for the computer simulation in-
cludes ka)&1. Consequently, expansion in powers of k
is not appropriate. On the other hand, the order-disorder
transition is observed at a reduced shear rate a*-0.4 (at
the highest density), and expansion in a* might be mar-

ginally acceptable. %'e have assumed this is the case, at
least for determining qualitative features such as the in-

stability, and M,~(k,a) has been evaluated as a function
of k to first order in the shear rate. The five eigenvalues
and eigenvectors can then be determined explicitly.

At zero shear rate and small wave vectors, the eigen-
values represent two sound modes, two shear modes, and
a heat diffusion mode. As the wave vector is increased,
the heat-mode eigenvalue softens (decreases) by more
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than three orders of magnitude, relative to its small wave
vector form, with a minimum for k near the peak of the
structure factor. Figure 1 shows the effect of shear rate
on this mode softening for n' 0.88. For the two densi-
ties considered by Erpenbeck, n' 0.88 and 0.704, the
critical shear rate occurs at a,' 0.63 and 0.85, respec-
tively. Figure 2 shows the dependence of the critical
shear rate on density; also sho~n are the results of Er-
penbeck, a,' 0.4 and 0.8. Since the values of the criti-
cal shear rates found here and their density dependence
are similar to those for the order-disorder transition, it is
reasonable to speculate that the latter arises from this or
a related type of hydrodynamic instability.

Some further comments for clarification and context
are as follows:

(1) The instability described here is associated with
the heat mode, which is already soft at large wave vec-
tors for zero shear rate as a result of effects of atomic
structure on the hydrodynamics. The additional soften-
ing at large shear rates is due to a coupling of longitudi-
nal-momentum variations to the transverse-momentum
variations in the direction of flow. The wave-vector
dependence of the transport coefficients is important;
consequently, the instability is the result of an interesting
interplay of atomic structure and macroscopic hydro-
dynamics far from equilibrium.

(2) In addition to the stability analysis, it is straight-
forward to calculate the eigenvectors. The eigenvectors
for the modes are then a known linear combination of
the conserved densities whose dynamics could be simu-
lated to study more directly the predicted instability.
For example, the unstable mode can be identified as due
almost entirely to density deviations from the uniform
shear state which couple into initial density, tempera-
ture, and velocity fields. A density inhomogeneity bp(r)
-cos(ky) prepared initially will have a dominant contri-
bution

rates near the instability. In Eq. (6), k(k,a) is the
eigenvalue which vanishes at a, . Typically the behavior
(6) should occur for r larger than a few collision times.
Simulation of this density response would provide a good
check of the predicted instability.

(3) The most serious approximation used here (and in
Ref. 5) is the assumption that the shear rate, a*, may be
treated as an expansion parameter. For the state condi-
tions considered, a —1 near the instability and this as-
sumption is questionable. It has been argued5 that the
angle averages in M,&(k,a) may diminish higher-order
powers of a'. We plan to check the validity of such ex-
pansions by a numerical calculation of the dominant ma-
trix elements.

(4) Kirkpatrick and Nieuwoudt's analysis is similar to
that presented here and likewise associates the order-
disorder transition with a hydrodynamic instability.
However, they include contributions to M,~(k,a) of or-
der a2, whereas we have included terms only to first or-
der in a. The dominant term in each calculation is asso-
ciated with an additional normal stress along the direc-
tion of the gradient of the shear flow. Here, this term
couples longitudinal and transverse velocity components
and is of order b,P~~ —ak 2p t„. Kirkpatrick and
Nieuwoudt attribute their instability to a coupling of the
longitudinal velocity to density variations of order
d P~~ —a kp~. These two nonequilibrium effects are
present in both models, but which dominates depends on
the quantitative estimates of their coefficients in each
model. In both Ref. 5 and here static correlations are ul-
timately approximated by equilibrium correlations.
However, the approximation is introduced at the begin-
ning of the former calculation while it is used at the end
of the present calculation. This seems to be the primary
source of difference in the two models since postpone-

gp(r t )/gp(r) -e z(k,a)' (6)

for k near the peak of the structure factor and shear
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FIG. 1. Heat-mode softening vs ko for n~ ~0.88 at shear
rates a 0.0 and 0.64; the latter case indicates an instability
near ko-6.
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FIG. 2. Minimum critical shear rate vs density (solid line).
Also shown are Erpenbeck's values for the order-disorder tran-
sition (circles).
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ment of the approximation allows us to avoid the Kirk-
wood superposition approximation used in Ref. 5. Both
studies should therefore be understood as primarily
directed at identifying the qualitative features of a
shear-induced instability. Quantitative accuracy may
well depend on a better understanding of the relative im-
portance of nonequilibrium momentum correlations.

(5) The linear hydrodynamic modes calculated here
can be used to determine the effects of nonlinear mode
coupling. It is possible that the resulting renormalized
modes could be modified significantly near the instabili-
ty. No attempt has been made here to determine such
effects.

The authors are indebted to Ted Kirkpatrick for com-
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