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Intractable Computations without Local Minima
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An NP-complete problem which is not a spin-glass is exhibited. The %P-complete problem 3-
satisfiability is also embedded into a continuous analog system with no hills in the energy landscape ob-
structing solution of the problem. There is, however, a large flat plateau. This sho~s how sculpting of
the energy surfaces of coIItinuous analog systems to remove hills may fail to aid solution of embedded
combiaatorial optimization problems.

PACS numbers: 89.&0.+h, 02.10.+w, 61.40.+b, 7S.SO.Kj

Hard combinatorial optimization problems have been
related to spin-glasses. Finding the ground state of a
spin-glass is an NP-complete problem. ' NP-complete
problems, such as the traveling salesman problem,
graph partitioning, 4 and graph coloring have been stud-
ied as spin-glasses. Simulated annealing, an algorithm
arising from spin-glass considerations, has been applied
to optimization problems. 6 The free energy landscape of
spin-glasses contains many metastable states, and also
an infinite hierarchys of thermodynamic equilibrium
states, i.e., valleys infinitely deep in the limit of infinite
system size. This ultrametricity seems characteristic of
many combinatorial optimization problems as well and

may be exploitable by heuristics. '

Because of the multiplicity of equilibrium states, spin-
glasses relax very slowly towards their ground state.
This has suggested" that NP-complete problems may be
computationally hard because they are spin-glasses. ' In
this paper I exhibit an NP-complete problem which has
only one equilibrium state, at least at zero temperature.
Its energy landscape is like a putting green in the game
of golf'; that is, broad and flat with one hole. This
occurs because all the frustrated loops involve a certain
unique spin, so that if it is removed there is no frustra-
tion in the system. This construction shows that compu-
tational intractability does not imply spin-glass nature.

To consider a combinatorial optimization problem as a
spin-glass, one must choose a topology, i.e., specify which
configurations are neighbors. I require the set of neigh-
bors to be listable in polynomial time. There is, however,
no canonical choice. Under different topologies the same
optimization problem can correspond to several thermal
systems. ' These can also be regarded as generalized
Monte Carlo algorithms. I define the temperature as
determining the probability to flip, rather than a single
spin, a cluster of spins simultaneously. This definition is
crucial to my result. My clusters are defined with use of
a generalization of Kempe chaining. '

To generate heuristic, physicists have suggested
embedding hard discrete problems into continuous ana-
log systems ~hose ground state determines the optimum
solution. ' Cleverly chosen analog systems fall into poor

local optima more rarely than the original discrete sys-
tern. As a version of the discrete system with some con-
straints removed, the continuous system has more de-
grees of freedom, and thus more directions to decrease
from any given point. Perhaps more importantly, the
constraints on the discrete system prevent free propaga-
tion of forces. The continuous system can develop a col-
lective action preventing small parts of the system from
getting stuck independently of the rest, and forcing local
optima to have a more global nature. ' Many authors
have reported that continuous embeddings lead to useful
algorithms. '~ Such embeddings have suggested hardwir-
ing of a special computer as these neural net circuits also
relax rapidly, in parallel. It still seems dubious, however,
whether these circuits can beat digital algorithms. ' By
embedding discrete problems one also gains the ability to
compute a gradient direction in the differentiable sys-
tems. This has been applied in learning networks. '

Ideally one would embed a hard combinatorial optimi-
zation problem into a system where simply proceeding
downhill in energy yields the optimal solution. I embed
3-satisfiability (3-SAT), an NP-complete problem,
into a potential with no hills. I present both a discrete
and a continuous embedding. In both cases a path leads
to the optimum without ever increasing the energy. The
potential, however, is a golf-course potential —flat but
for a hole at the global optimum. The only known way
to find the hole is exhaustive search. I view this interest-
ing manifestation of intractability as the likely end result
of sculpting energy landscapes to remove local minima.

ÃP is a broad class of decision problems, i.e., problems
with answer yes or no. ' Problem 8 is mapped into prob-
lem A if for every instance b of 8 we can construct in po-

lynomial time an instance a of A such that a is yes if and

only if b is yes. A is then at least as hard as 8 since,
given a p-time algorithm for 8, we map b into a and
solve it. If every problem in ÃP can be mapped into A

then 8 is AP-eompIete. Cook proved that 3-SAT is
NP-complete. Thus, by composition of maps, any
problem C into which I nap 3-SAT is ÃP-complete.

An instance of 3-SAT is comprised of a collection of
Boolean variables and a collection of clauses. Each
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clause takes the form (a or b or d), where a, b, and d
represent three of the boolean variables, or their nega-
tions. A satisfying truth assignment is a particular
choice of values for the variables such that every clause
is true. The problem of 3-SAT is, given an instance, is
there a satisfying truth assignment?

I now proceed in three steps. First I map 3-SAT into
graph three-coloring to produce an %P-complete prob-
lem. Second I define an energy function taking the same
value e at configurations corresponding to nonsatisfying
truth assignments, and energy 0 at satisfying truth as-

signments. Finally I define a topology, i.e., a set of
transfoi mations from a configuration to neighboring
configurations. My topology contains only transforms
which do not increase the energy, and yet allo~s exhaus-
tive search of the energy s plateau looking for energy 0
holes.

Let C = {c~,. . . ,c~l be any set of three-clauses in the
variables fv~, . . . , vJ given as an instance of 3-SAT.
Let e; =(a; V b;V d;) I. describe a graph G, three-
colorable if and only if C is satisfiable. . The set N of
nodes of G is

N - fu ~,u2, j U fv;,v;:I «i «nf U hvj'I «i «p, 1 «j «5).
The set E of edges is

E -f(u(u2), (u(u2)lu l(v;, v;):I «t «nf U [(u2vt), (u2vt):I «t «nJ

U j(at, wg) ),(bt, wt2), (dt, wt4): I «i «pJ U f(wt) wt2), (wtI, wt4) (wt2 wg4): I «l «pl
U f(w;3 w;s), (wt3 u I),(w;s u )),(F4 wts): I «i «pf.

6 is fabricated from subgraphs 0; shown in Fig. 1, I

consisting of w;~ w;q, w;3, w;4, w;q, and u ~ (common to all
the H~), and the variable nodes a;, b;, d;. The subgraphs
H; correspond to the clauses e; in the instance of 3-SAT,
and the variable nodes a;, b;, d; take values among the
fv;, v;i accordingly. I describe nodes a;, b;, d; as inputs
of the subgraph H;, and u ~ as its output

To each node j of G associate a spin (or color) vari-
able s(j) taking one of three values: x, y, or z. Define
a conflict to be an edge connecting two nodes with like
spin. Now map any truth assignment to a partial spin
assignment by s(vt) x if v; is. true and y if v; is false.
Note (by inspection) that the H subgraph acts as a
clause in that any assignment of x and y spins to its three
inputs extends without conflict so that s(u~) x if and
only if at least one input spin is x. Thus any satisfying
truth assignment can be extended to a three-coloring of
the graph, and conversely any three-coloring is seen to
yield a satisfying truth assignment. 23

I now construct the golf course. The point is that
excising vertex ui removes frustration from the graph.
To exploit this I allow s(u~) to take in addition a fourth
value, e. Picture these spins as unit vectors pointing
along one of four orthogonal axes, and define the usual

dot product: i x j y i z e-e 1, i.j all other
dot products 0. Define for this system the energy:

E = g s(j).s(k)+ee. s(u ().
edges( j,k)

Choose s & 1, say 2. The ground-state energy is zero if
and only if the original instance of 3-SAT is satisfiable.
Every nonsatisfying truth assignment maps to an assign-
ment of s(v;) extendable to a spin configuration with
s(u ~) =e, no conflicts, and energy e.

Call two nodes x-y connected if a chain of nodes con-
nects them along which the spins alternate between x
and y (including the two nodes themselves). I describe
this as an x-y chain. Define a contiguous x ytransform-
at site i to be the replacement of the spin x at site i by y
together with the simultaneous interchange x y of the
spin of all nodes which are x-y connected to i Figure .2
shows an example of the effect of such a transform. The
effect of this transform can be computed in time bound-
ed by %2, if there are N nodes in the graph. 24

I take as transform set the contiguous a -b transforms,
with a and b taking any values in x, y, z, e, except that I
allow only s(u~) to take the value e. There are 2N+ I

such transforms. No contiguous transform ever changes
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FIG. 1. The subgraph H;.

FIG. 2. The effect of a contiguous y-x transform at node 3.
Nodes 6,7,8,9 are unaffected. The total number of conflicts is
lowered by 1.
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any nonconflict edge to a conflict; thus only the
transform rotating s(u~) to e can increase the energy.

Theorem I.—There exists a sequence of contiguous
transforms which render any configuration with s(u~)
=e to the ground state.

The proof, presented in detail elsewhere, is by ex-
haustive construction. If s(u~) e, transforms do not

propagate through u ~ and chains connect different H
subgraphs only through their inputs. I use preparatory
contiguous transforms to break dangerous chains and
thus deal with one subgraph at a time. I first exhibit a
sequence of contiguous transforms which render any ini-
tial state to a configuration with no conflicts. All inputs
have spin either i or j, and all such configurations corre-
spond to truth assignments.

I must now show that we can slide freely on this pla-
teau of energy e. I can arrange each 0; to have i stra-
tegically located so that no input is i-j connected to
another. This allows one to transform freely any v;
without affecting any other vj or u~ except U;. This
means that I can change the s(vq ) to any existing satis-
fying truth assignment. I may then transform s(u~) to
x, and reach the zero-energy ground state.

Corollary. —Any configuration can reach the ground
state by a path with energy cost ~e. There are no deep
valleys.

To remove all metastable states from the system, I
slightly modify the energy and the transformation set,
without disturbing the property of %P-completeness. I
leave the details for a longer treatment, " where I prove
the following theorem.

Theorem 2.—With modified transformation set, any
configuration can be brought to the ground state without
an increase in the modified energy.

I next extend this construction to a continuous embed-
ding. Instead of spins, assign to each vertex j of the
graph G a unit vector r(j) E R . Every vector except
that associated with u~ lies in an % spanned by three
orthonormal basis vectors x,y,i. r(u~) lies in the x-e
plane, where e is a fourth orthonormal basis vector. The
graph is modified to G' by the addition of edges connect-
ing w;z to w;3. Define energy as

E g [r(j) r(k)j +eEe. r(uq)) .
edges(j, k)

I need to choose e« I. The dot products now represent
ordinary inner products.

I describe a starting point which is the ground state if
the 3-SAT instance is unsatisfiable. Let r(u~) =e,
r(u2) ~; &i, r(v;) x, r(v;) =y, and now trivially
choose the r(y;) to fill in so that there are no conflicts,
i.e., edges connecting vertices with nonorthogonal vec-
tors. The energy of this configuration is e. Configura-
tions with smaller energy have no edge containing energy
greater than e. Elsewhere I showed that G' could be
orthogonalized if and only if it could be colored. Simi-

lar analysis shows that, for unsatisfiable instances no
configuration has energy less than s.

I define a contiguous rotation about a by angle 8 to be
a rotation of one vector about axis i together with the
simultaneous rotation of all neighbors, together with ro-
tation of their neighbors except that chains do not propa-
gate through unaffected vectors (in this case a). Con-
tiguous rotations preserve orthogonality. Proof similar
to that of theorem 1 now establishes the following
theorem.

Theorem 3.—The configuration described is the
ground state whenever the instance is unsatisfiable, and
can relax to the ground state without increasing the en-
ergy otherwise.

I do not know whether other local minima exist. This
is unimportant for purposes of using a continuous
embedding to solve a hard problem, as one may specify
initial conditions for the system.

I have given an NP-complete problem and a reason-
able topology such that a path along which energy never
increases leads from any configuration to the ground
state. 27 To accomplish this I constructed an NP-
complete problem with frustration involving only a single
vertex. This demonstrates that not every NP-complete
problem can be regarded as a spin-glass. This mapping
does not appear to help solve 3-SAT, which was put into
a golf course where no clue points the way towards the
ground state. My analysis has all been at zero tempera-
ture. At finite temperature, the hole in the golf course
will wash out. I believe it will remain true that there is
one equilibrium state.

This example raises the following question. In the
thermodynamic limit, spin-glasses have many stable
states. Does a path connect these equilibrium states
which only rises finitely high in energy, but is so narro~
as to require exponential time for finite temperature an-
nealing to discover~

I have also mapped an NP-complete problem into a
continuous system with a distinguished state which is ei-
ther the ground state, or able to reach it without increas-
ing the energy. In short, if the system can evolve so as to
lower the energy, then the answer to my problem is yes.
I believe I found the generic consequence of embedding
hard combinatorial problems into continuous media
without local minima; namely, such systems will stick on
table tops, unable to roll because the energy landscape is
flat.

I do not wish to discourage continuous embeddings. I
expect that they may be useful for heuristics if one does
not attempt to remove all local valleys. I regard the ex-
tent of the energy surface crafting I was able to accom-
plish as surprising. Finally my work indicates that
embedding discrete problems in continuous systems can
suggest useful topologies for the original problem.
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