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Quantum Transport and Surface Scattering
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The effects of surface scattering on quantum transport in thin films and spires are considered. A non-

trivial channel-mixing problem arising from random boundary conditions is solved exactly by a new

method that ere present here. %e find that the full quantum-mechanical treatment of very pure systems

leads to results qualitatively different from those of currently used quasiclassical theory. Our theory ex-

plains some recent experimental observations.
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Recent advances in microfabrication of metallic and
semiconductor nanostructures have led to samples whose

miniature dimensions and high purity allow for a direct
observation of quantum size effects. ' In such samples
the mean free path due to ordinary impurity scattering
can be orders of magnitude longer than the thickness or
radius of a sample. Under these conditions any realistic
discussion of quantum transport in thin films and wires

has to take into account the effects of surface scattering.
It is therefore of great practical interest to understand in

detail the limitations on quantum transport arising from
the scattering off rough boundaries.

At present such understanding is not available. In
most of the experimental work the size effects in the
electrical conductivity are included via quasiciassical
formulas of Fuchs, Englman and Sondheimer, Ziman,
and Soffer derived by consideration of the Boltzmann
transport in the presence of a diffusely reflecting boun-

dary. While these formulas seem to work well for thick-
er, relatively dirty systems5 they are completely inade-

quate for very thin, high-purity samples. This becomes
apparent if one considers the conductivity cr of a film of
thickness d with diffusely reflecting surface. In the limit
when the impurity mean free path i goes to infinity
a~d ln(l/d) (Ref. 4) diverges, an implication that in the
absence of a bulk relaxation mechanism the scattering
off the random surface induces no dissipation of electri-
cal current. This nonphysical result is a direct conse-
quence of the complete omission of quantum size effects

from the quasiclassical theory.
In this Letter we present the fully quantum theory of

transport in films or ~ires with rough surfaces. We
show how to relate the variations in the surface profile to
a set of pseudopotentials acting on the quantum states of
a system with the same average thickness or radius but
with a smooth surface. The method for evaluation of
these pseudopotentials is quite general and can be ap-
plied to simple confining potentials (impenetrable box or
harmonic oscillator) as well as to some effective confin-
ing potential resulting from a more microscopic calcula-
tion.

We define boundary roughness as variation in the
parallel space (xi) of a single length scale c of some
confining potential U, (x&) in the perpendicular space
(x&). The full Hamiltonian for this problem can be
written as H Ho(xi)+H t,i(x&), where Hn describes
extended states in the parallel space, H,t, )=——(ii /2M )V~+ U,(,)(x~), and subscript a(xi)
denotes the variable length scale of the confining poten-
tial. Here we are interested in deviations of a(xi) from
some average c. Assuming that these deviations are
small, we can formulate perturbative treatment of H.

Consider the operator expS (xi) =exp' (xi)expSO(xi),
where So(xi) —' l.(xi)[x (8/8x )+(8/Bx )x ] and

In[a/a(xi)]. While the unitary operator expSO act-
ing on the eigenstates ( W ) of H, generates the eigen-
states (9',t,,i) of H, t,,), the nonuniiary operator expS
acting on 0 generates 0 ~„,~, that is

H t,i=exp[S(xi)]H exp[St(xi)] =exp[2', (xi)]exp[SO(xg)]H exp[ —So(xi)].

Equation (1) now enables systematic evaluation of the effective Hamiltonian that will serve as a basis for the perturba-
tion expansion. To the leading order in k, which is the small parameter of the theory, this effective Hamiltonian is
characterized by the set of channel-mixing pseudopotentials 2U%"

~ H, ) 9',")+(W,') [S Ho, ] [ 4'").
Up to this point the discussion was completely general. We now focus on the specific case of a film with a rough sur-

face parallel to the x-y plane: then xi=(x,y) and x~—=z. Using the leading order expansion of (1), and assuming
that the particles move freely in the x-y plane, we can write the effective Hamiltonian for the rough surface problem:

H,fr =g(&g+F.„)c~~ci +g gZ(q) V cd+~„c~. (2)
k,n k,g n,m
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Here k=(k„k~) and A, (q) is a Fourier transform of
k(x,y). The matrix V is defined as

V..=2~„b +—,'(Z„—Z„)[za/ez+(e/az)zj, (3)

where E„are the eigenvalues of H (z ).
The effective Hamiltonian (2) can be treated by a

familiar perturbation theory. The channel-mixing pseu-
dopotential A, (q) V is directly related to variations in

the surface profile and the explicit form of V depends
ort a particular choice for the confining potential. It is
clear that the self-energy matrix IV and the full
Green's function G cannot be calculated for any V
To evaluate G for an arbitrary confining potential
U(z) is is necessary to invert an n~xn, matr. ix, n~ being
the number of subbands in the k space located at the
Fermi level. As n, is a large number for most cases of

interest, it appears that finding 6~ and carrying out the
summation of the perturbation series for conductivity is
a highly impractical task.

Ho~ever, in the special case of a particle-in-a-box po-
tential, 6 can be found explicitly for any n, . This is
possible because in this case V is a separable matrix,
i.e., V =fQ V, where f„n(—)" and V=I'i x /Md .
The separability of V enables us to treat the matrix
character of a perturbation expansion exactly. Although
U(z } is nonanalytic in this case, V, as defined in (3),
is perfectly well behaved. This makes it possible to dis-
cuss this potential with use of the effective Hamiltonian
(2), on equal footing with other confining potentials of
which indeed it is a special case.s Defining w(x,y)

A, (x,y)d, where d is the average thickness, we find the
self-energy IV (k,oi) fQ 8'(k, ro) and the Green's
function

W(k,~}-"
&w(q}w(-q)&

1 —IV(k —q, ro)go(k —q, ai) '

Go~li~+Go~~fnfm~/(1 IVgo) jGo~

where go=+J'„Go„and argument (k,m} is understood.
We are now in the position to calculate the conductivi-

ty of a film as limited only by surface scattering. This
can be done for an arbitrary surface profile as long as
the second moment is well defined, since the separability
enables exact summation of the ladder diagrams. In par-
ticular, the effects of correlations in surface irregularities
can be included, leading to reduced scattering rate. This
offers a possibility of a "first-principle" calculation of
the conductivity when there is. independent information
regarding &w(q)w( —q)), a quantity that is directly
measurable by scanning tunneling microscopy, for exam-
ple. For simplicity, we consider here the "white noise"
surface profile describing an uncorrelated, atomically
rough surface. This implies &w(q)w( —q)) a H,
where a-kF and H measures the rms fluctuations in
film thickness. The conductivity is calculated from a
Kubo formula allowing for the matrix character of
Green's functions. The leading term in Hz comes from a
single loop, i.e., cr'cLTr(GnT"). For ordinary dirty met-
als this term gives the classical, Boltzmann result. In our
case, for n, =-kpd/ir»1,

2 n,' k F404
~'='„6ns(n, ) ', 1+0 ", + . . -, (6)

k Hz nz

where s(n, ) =g„"',(I/n') =z /6
p'=a' ' represents the residual resistivity due only to

the boundary scattering. It has no elassieal analog. As
Ii 0, p' vanishes, unlike its counterpart for impurity
scattering. The zero resistivity arises since, classically, it
is possible to prepare a beam of electrons moving parallel
to a rough surface and traveling baBistically across the
sample. The quantum-mechanical zero-point motion ex-
cludes momentum states confined to the x-y plane and

results in finite resistivity. That this is the case can be
seen from the effective mean free path deduced from o',
I' 6n(n, )(n, /kfHz)d. This indicates that conductivity
is dominated by the longest mean free path,
Im~ 6 n( nP /k/ H)d, corresponding to the n =1 sub-
band and accounts for rather strong d3 dependence of o'.
Note that I' is not of order d and can be much longer.

Except for the highest-purity samples it will be neces-
sary to consider the interference between impurity and
surface scattering. In this context, of particular interest
are the size effects describing the increase in resistivity
of a film as d becomes shorter than the impurity mean
free path I. Using our theory, we can calculate these ef-
fect including impurities as an additional source of
scattering in Eq. (2). Defining o as conductivity of a
bulk system, we obtain

' —1a' 1
"' l1+ nz

1 Im~

The expression (7) describes the crossover from the
impurity-scattering-dominated region (d/I »1) to the
thin-film (d/I «1), where the surface scattering dom-
inates. In Fig. 1 we test (7) against recent experimental
results of Hensel et al., where the resistivity of epitaxi-
ally gro~n, single-crystal CoSi2 films has been measured
as a function of thickness in a wide region, 60~d
~1100 A. These are some of the best-quality samples,
with long mean free path, I =1000 A.. The full line is
the best fit to the data of Eq. (7), obtained for H -2.06
A, a value that appears to be quite reasonable from what
is known about these films. For a. d/I )0.2, it basi-
cally coincides with the p 0.9 quasiclassical curve.
However, for x &0.2 there is a qualitative change and
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the resistivity increases much faster than predicted by
quasiclassical formulas reflecting the trend obvious in

the experimental results. It appears that Eq. (7) pro-
vides a better overall fit than either of the dashed lines.
As high-quality single-crystal films with smaller x be-
come available the qualitative difference between (7)
and quasiclassical expressions will become even more ap-
parent.

Further experimental evidence that Eq. (7) is relevant
for thin films comes from the work of Orr et al. ,

'o who

studied very thin Sn films grown by deposition on a cold
substrate. A crossover in resistivity from standard
pcL1/d to p~l/d", where v=2, has been observed for
very small d. We can explain this result by considering
the crossover predicted by Eq. (7) in the limit of very
thin films, where surface scattering plays a decisive role.
Theoretical models of film growth imply Hz~d for ran-
domly grown film and H2~d2/ for ballistic deposition.
From Eq. (6) we predict that v-2 and v —', , respec-
tively, for these two models of surface profile, both
within the fitting error of experimental v.

From Hamiltonian (2) it seems clear that surface
roughness may induce weak localization effects in thin
films even in the absence of any bulk relaxation mecha-
nism. In ordinary dirty systems the origin of localization
lies in enhanced backscattering. " We can study these

lQ
5

FlLM THICKNESS (11)

lQ lQ

H=Q.Q

0
Ql

I

0. 1

FIG. 1. Resistivity vs thickness for fourteen thin-film sam-
ples of CoSi2 from the experiment of Hensel et al. (circles).
Solid line represents (p'/p ) as found from Eq. (7) with
H 2.06 A. Two dashed lines resulting from quasiclassical
theory correspond to two values of specularity parameter p.

effects by considering the sum of "maximally crossed"
diagrams. Again, these diagrams cannot be summed for
an arbitrary confining potential, but for particle-in-a-box
the Ansatz D„„(q,ru) f„f ff,D(q, tu) enables us to

I find Cooperon propagator in a closed form:

D(q, tu) Vz 1 —V2 g fJff,G~ (k'+q, ru)G„( —k, ru)
n, rn, r p,k

With the help of Eqs. (4) and (5) one can prove that
D(q, ss) possesses a diffusion pole as q 0, tu 0. Ex-
pansion around this pole and summation over channel in-

dices produce a scale-dependent correction to o':
2

ga„ ln (9)
ft zrn , lnm, n, m

where l„ I,„/nm and

27rt n +m~ (E„—E )'+(a'/4~)(n'+~')'

,„/vF. Therefore, we arrive at the result that,
even in the absence of impurities, all states in an infinite
film are localized at T 0, for arbitrary large thickness
and for arbitrary small but finite surface roughness. '2 If
the upper cutoff at nonzero temperature is some dephas-
ing length L&~ T t'/, Eq. (9) gives o" (ez/2tr ft )
xpa~ lnT with c~ 1, same as for ordinary localization.

The fact that surface roughness leads to c~ 1 can be
used to explain the results of Chaudhari, Habermeier,
and Maekawa. They have observed that in a single-
crystal Au films, c~ is not universal and varies with the
sheet resistance of a sample, decreasing from 5.86 for
R 8 0 to 1.6 at R 32 Q. These are extremely clean
films, with impurity mean free paths in excess of 10
and only sources of scattering are thought to be the sur-

face roughness and dislocations developed during the
manufacturing process. ' The dislocations are preferen-
tially in the z direction and will not induce interband
scattering. This would imply ar =n, The inter. ference
of these two processes results in ar in between 1 and tt,
and reproduces the qualitative trend found experimental-
ly if the increase in resistance is correlated with rougher
surfaces and thinner films. ' The quantitative fit can ac-
tually be made very precise but we will not discuss it
here for a lack of space. It is important to emphasize
that this mechanism offers an alternative to explanation
of nonuniversality by the Kondo effect. ' The Kondo ef-
fect is not important in thin films (d/l «1). If one as-
sumes that the impurity mean free path I is proportional
to lnT because of the Kondo effect, it is obvious from (7)
that this lnT dependence will not be reflected in the
resistivity.

In summary, we have developed the theory of trans-
port in smail structures with rough surfaces, taking into
account a quantized nature of particle states and treating
the channel mixing exactly within the perturbation ex-
pansion. Our results represent qualitative improvement
over currently used quasiclassical theory. We have
demonstrated that our theory accounts very well for
several recent experimental observations.
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