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Patterns Produced by Precipitation at a Moving Reaction Front
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Many precipitation patterns are associated with the formation of a sparingly soluble product at a
moving reaction front. This paper describes a model which describes the transport, reaction, nu-

cleation, and droplet-growth kinetics of the processes involved. It is established that the rapid
change in the nucleation rate as a function of the supersaturation is essential for pattern formation.
The model allo~s us to correlate details of the patterns with the various kinetic processes.

PACS numbers: 05.70.Fh

Systems that exhibit pattern formation are common
in nature. In many systems a pattern is formed in the
wake of a moving front or interface. Directional solidi-
fication' and front propagation into an unstable state2

are examples of processes of this type. The pattern
formation results from the steady-state morphology of
the solidification interface in the former case and from
the dynamic properties of the moving front in the later
example. The precipitation pattern formed in the
wake of a moving reaction front is another example of
this later type. This phenomenon is more commonly
called Liesegang band formation. 3 The process is be-
lieved to be responsible for the precipitation patterns
observed in polymer films, 4 agate rocks, 5 and many
other systems. Theoretically, there has been disagree-
ment as to the mechanism responsible for these pat-
terns. My aim here is to construct a realistic model of
this system which explains all the global features of
this process. The model illustrates a class of problems
where "feedback" between two kinetic processes is
responsible for the patterns observed.

A large quantity of experimental literature exists on
this subject. 6 A number of these systems are of the
type illustrated in Fig. 1. A test tube with a uniform
concentration Bo of silver nitrate (AgNO3) in an aque-
ous gel occupies the region x & 0. The gel insures that
no fluid flow occurs. At time r =0 the region x (0
contains an aqueous solution of acid, HCL say, with a
uniform concentration Ao. These two substances react
to produce silver chloride (AgC1) whose equilibrium
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FIG. l. A typical precipitation pattern.

concentration in the gel is Co. If Ao)& Bo a reaction
front will form at x =0 and then diffuse into the gel.
If the concentrations of Ao and 80 are chosen so that
the system is initially highly supersaturated at x=0
then AgCl will precipitate out of solution at the front.
Under these conditions precipitation patterns are
formed with the general features as shown in Fig. 1.
With this experimental geometry the pattern is one
dimensional. The dark bands denote the presence of
precipitate. Initially, a continuous region of precipitate
forms. Then bands are observed to form If X„,.T„,
and W„denote the position, time of formation, and
width of the Nth band, respectively, then the following
general observations6 7 have been made on systems of
this type. (a) It is observed that the ratios P„=X„+&/
X„and Q„=X2/T„approach constant values as N in-
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creases. (b) W„ increases linearly with X„. (c) A low

density of precipitate has been detected between the
bands and ahead of the forming pattern. (d) The
number of bands observed increases with an increase
of either Ao or the value of the initial supersaturation.

Theoretical models of this system fall into two
categories. The first attributes the patterns to a feed-
back mechanism between the nucleation and droplet-
growth kinetics. The second explains the phenome-
non in terms of a post-nucleation instability. In the
first category it was Ostwalds who first suggested that
the nucleated particles at the reaction front deplete
their surroundings of the reaction product which
causes the local level of supersaturation to drop to the
extent that little or no further nucleation occurs. As
the reaction zone moves away from this region, the
growing particles in the immediate wake of the front
continue to deplete the reaction zone of product and
hence suppress nucleation. Eventually, the concentra-
tion of product at the moving front again achieves a
value where appreciable nucleation occurs. A repeti-
tion of this sequence of events would then cause pat-
terns to form. Theoretical predictions of the pattern
geometry were made by Prager~ and by Zeldovitch,
Barenblatt, and Salganik. 'o To formulate the problem
into an analytically tractable form they assumed a priori
the existence of sharp bands. They showed that for
large N or at asymptotic times the ratio P„has a con-
stant value. The model did not permit the presence of
precipitate between the bands. The bandwidth 8'„was
assumed to be vanishingly small. It neglected the ef-
fects, if any, of the transport kinetics of the product,
the reaction kinetics, and the details of the nucleation
and droplet-growth kinetics. A numerical solution" of
a model which included a more complete description
of this system did not produce banding patterns. This
study, however, did not include an adequate descrip-
tion of the nucleation kinetics. These discrepancies
have led to the formulation of other theories. Most
recent among these has been a theory'2 which attri-
butes the phenomenon to a post-nucleation droplet-
coarsening instability known as the Lifshitz-Slyozov'3
instability. This is the well-known process associated
with the late-stage evolution of systems undergoing
first-order phase separation. Fluctuations in droplet
size during the later stages of phase separation result
in the growth of larger droplets at the expense of their
smaller neighbors. It has been shown that such a pro-
cess can produce band patterns in a system where a
continuous domain of identical droplets are perturbed.
However, it has not been possible to demonstrate the
formation of band patterns with the properties as
described above in points (a)-(d).

I will demonstrate that the pattern solutions de-
scribed above can be obtained as solutions of a model
based on Ostwald's ideas. The crucial feature of this

(4)

particular process is the rapid change of the nucleation
rate as a function of the local supersaturation. While
the Lifshitz-Slyozov instability does occur in these sys-
tems, I believe that it only affects the intraband mor-
phology at later stages of the evolution and hence
plays no role in the initial formation of the patterns
observed.

The dynamic processes operative in this problem are
the transport kinetics of the reactants and product, the
reaction kinetics, the nucleation kinetics of the prod-
uct, and the subsequent growth kinetics of the precipi-
tate particles. If a, b, and c denote the dimensionless
concentrations of the reactants and product, respec-
tively, then the equations describing the system can be
written in the form

t),a = 82a —~ab, (I)
h, b = (D,/D, )a2b «b, - (2)

B,c = (D3/Di )8„'c+~ah —u, (3)
where we are considering a one-dimensional system,
and all lengths and times have been scaled with L and
L2/Di, respectively, where L is a length of the system.
Di, D2, and D3 are the diffusivities of the reactants A

and 8 and the product C, respectively. All concentra-
tions have been scaled with Ao, i.e., the concentration
of HCI at x =0. The first term on the right-hand side
of the above equations describes the diffusive trans-
port of the reactants and product in a homogeneous
system. The second term describes the reaction which
is assumed to be second order with a reaction rate
parameter k, with K denoting the scaled reaction rate
kAOL2/Di. The reaction is assumed to be irreversible
for simplicity, though reversible reaction kinetics can
be modeled if required. The last term in Eq. (3) is a
nonlinear sink term which describes the depletion of
product by the nucleation and droplet-growth proc-
esses.

We assume for simplicity that the nucleated particles
are spherical and remain so as they grow. We assume
that the particles are immobile in the gel medium and
that their growth is interface-controlled. Thus, growth
of the droplets by coagulation is not included. The
possible effect, if any, of the electrolyte solution on
the kinetic processes is ignored. With these assump-
tions, the number of molecules of product contained
in the precipitate phase is

f= (4m/3v) dt' J(x, t') r'(x, t, t'),

where J is the nucleation rate, r(x, t, t') is the radius at
time t of a particle which was nucleated in the past at
time t', and ~ is the molecular volume of the product
in the solid phase. Then, using the fact that u = f, we
have

u = (4~/3w) I J(x,t) r'(x, t, t)
t t

+3„dt'J(x, t') r2(x, t, t') r(x, t, t') ), (5)
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where r (x, t', t') = r' is the nucleation radius. The
functions J, r, and r' are functions of the supersatura-
tion s, where s = (C —Cp)/Cp. The nucleation rate is
of the form J(s) =I'(s)N(s), where W(s) is the
number of critical nuclei and I (s) is the rate at which
molecules of product attach to a critical droplet. From
nucleation theory we have

W(s) = Cp(1+ s) exp( 4mo.—r"2//3ka T), (6)

J(s) = J,(1+s)2 exp( —[s'/in(1+ s) ]2 j,

where

(8)

2& 1/2
4ntrw2

3ka T
4mD3 wCp2

6d

If the growth rate of the droplets is interface con-
trolled, then an appropriate expression for the growth
rate'4 is r' = Gs where G is a constant. Using these ex-
pressions for J(s) and r'(s), we can evaluate u and
hence solve the system of Eqs. (1)-(3). Knowing u
and J at each point, we can compute the density of
precipitate, the average number of droplets per unit
volume, and the average radius of the droplets
formed. The constants used in the above expressions
are shown in Table I and have been obtained from
various sources. '5

For simplicity I set c(0,t) = c(L,t) =0.0. This
boundary condition leads to a flux of product out of
the gel at x = 0, which will cause dissolution of precipi-

where a is the surface tension. The function I (s) can
be described approximately by

I (s ) = (D3/ d ) (477 r dCp( 1 + s ) ],

where the first factor is the rate at which molecules
jump to the critical droplet from a distance d away and
the second factor is the number of molecules of prod-
uct in a shell of thickness d about a critical droplet.
The length d is taken to be of the order of twice the
molecular diameter. The nucleation radius is of the
form r" = w/ln(l+ s), where w is the capillary length.
The dominant dependence of J on s comes from the
exponential dependence of tV(s) on r'(s); therefore,
with the exception of the dependence of W(s) on
r'(s) we neglect the dependence of r' on s by setting
r'= w We then obtain the following expression for
the nucleation rate
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FIG. 2. A plot of the density of precipitate as a function
of position at t = 27 h and k = 10' mol ' sec
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tate particles in the vicinity of x =0.0. With these ini-
tial conditions, I solved the equations numerically. In
Fig. 2 I show a plot of the precipitate density at t —27
h. We observe that a continuous band of precipitate
forms first. Some of the precipitate has redissolved as
a result of the flux of c out of the gel at x = 0. Super-
imposed on this continuous background is a growing
density oscillation. This oscillation grows until bands
are observed to form. Visually, one would observe
faint bands emerging from a continuous precipitate
background. Figure 3 shows the number density of
nuclei. We see that there is indeed precipitate material

TABLE I. Some typical parameter values for the AgCl
system.

A0 =0.01k', 80=0.0130

D~ = D2 = D3 = 10 crYl /sec

o. =170 erg/cm2

Co ——7.48 x 10'~/cm3

6=10 7 cm/sec

I

$0
I

20
1

30 40
X (m.m. )

FIG. 3. A plot of the number density of precipitate parti-
cles as a function of position at t = 27 h and k = 10 mol
sec
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rate. Thus, the reaction-zone width which decreases
with increasing k affects both the band spacings and
the bandwidths. Since K is proportional to Ask, this
implies that the bandwidths decrease with increasing
Ao.

The model calculations imply the following con-
clusions: (I) The rapid change of the nucleation rate
with supersaturation is essential for pattern forma-
tion. '6 (2) Precipitate exists between the bands. (3)
P„and Q„are slowly varying functions of X„ for finite
reaction rate k. (4) W„ increases linearly with X„. (5)
The number of bands observed increases with Ao or k
and their widths decrease.

I would like to thank L. Manring and S. Mazur for
many helpful conversations.
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between the bands and in front of the leading band.
Figure 4 shows the ratio P„ for two different reaction
rates where P„ is plotted as a function of band posi-
tion. The simulation at the lower value of k was run
for a longer time, which accounts for the observation
of bands at larger values of x The values of P„ for
both reaction rates drift towards lower values. The ex-
tent of the drift is smaller for the larger value of the
reaction rate and both sets of data indicate an asymp-
totic approach to a constant value. Since the variation
in P„ for the larger value of k is only on the order of
1%, measurement of such an effect may be difficult.
This fact may account for the large number of experi-
mental observations which indicate a constant value of
P„. The inset in Fig. 4 shows the bandwidth 8'„as a
function of band position for two values of k. The
bandwidth is taken to be the width at a precipitate den-
sity of 10 5 g/cm3. In both cases, the bandwidth in-
creases linearly with x. We also observe that the width
at fixed x is smaller for the case of the higher reaction

FIG. 4. A plot of the ratio P„vs position of the bands for
values of the reaction rate equal to 2000 and 100000 mol '

sec ', respectively. Inset: Plot of the bandwidth W„ for the
same values of k. The noise in the data for P„ is due to nu-
merical error.
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