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Flow of Polarized Fermi Gases through Narrow Channels
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The flow of a polarized Fermi gas through channels from one cell to another can be used to study its
transport properties. If the mean free path X, in the gas is smaller than the radius r of a channel, the
time constant for the filling of an empty chamber can yield the viscosity of the gas in both the
Boltzmann and degenerate cases. If X, & r and the gas is degenerate, a novel effect is predicted: Because
the Fermi velocities of the two spin species are different, the polarization in the second cell will initially
have a value greater than the equilibrium value in the first cell.

PACS numbers: 67.65.+z, 66.20.+d, 67.50.Dg, 67.60.Fp

Polarized gases, such as 3He gas or dilute solutions of
He in superfluid He, are expected to have substantial

increases in viscosity and thermal conductivity as the po-
larization is increased. ' 3 It seems natural to measure
the viscosity by studying the flow rate of the gas through
a narrow channel. We consider theoretically the situa-
tion in which a gas is polarized in one chamber and then
allowed to flow through a channel into a second chamber
which is empty or partially full of polarized gas. We will

show how the experimenter can infer the viscosity from
the time dependence of the density of gas in the second
chamber. A nice feature of this setup is that the density
in the second cell can be monitored either by measuring
the polarization in the second cell by magnetic tech-
niques or by using the usual capacitance gauge.

An assumption in the above discussion is that the con-
ditions for Poiseuille flow hold, namely that the mean
free path k is smaller than the radius r of the channel.
However, in the Knudsen limit, A, & r, the rate of dif-
fusion of particles down the channel is governed by col-
lisions with the wall and depends on the average particle
velocity. For degenerate gases the relevant velocities are
different for up and down spins because the Fermi mo-
menta are different. This implies that the dominant spin
species will diffuse faster. The result is that the polari-
zation in the initially empty chamber will be enhanced
over that of the full chamber for the early portions of the
fill time. This situation is very analogous to the separa-
tion of isotopes of uranium by gaseous diffusion. Of
course, in that case the velocity difference is created by a
mass difference rather than by degeneracy effects. In
principle, the cascade technique used in isotope separa-
tion could be used here to produce very large nonequili-
brium polarizations-if the spin-relaxation time can be
kept sufficiently long.

Some preliminary viscosity measurements of polarized
dilute solutions of He in liquid He ~ere carried out by
Schmiedeshoff who used a vibrating-wire technique.
Experimental difficulties made these measurements un-

certain. Bouchaud and Lhuillier have proposed measur-
ing the product of the thermal conductivity and the
viscosity by examining the Rayleigh-Benard instability.

Our approach to the viscosity provides a simple alterna-
tive method.

We first consider a polarized gas in the limit of
Poiseuille flow. Two volumes Vt and Vz are separated
by a filter (or perhaps a capillary tube) as shown

schematically in Fig. l. Vt is filled with gas of density

nt and initial polarization M to (—
1 & M & 1). The fil-

ter separating the two volumes has a total of C channels
each of radius r and length L. The current density of
atoms flowing through one of these channels is6

I —(nr 2/8 rt) dP/dz,

where rf is the viscosity and n the gas density. dP/dz is

the pressure gradient in the tube. From the curr=nt ex-
pression we find that the density in cell 1 decreases ac-
cording to

dn 1 CXI' ttr C dPJ n)
dt Vt, 0 8Vtrit dz,

The filter channels start at z 0 and end at z L. A
subscript has been put on g because, in general, the
viscosity can depend on density which can change con-
siderably from one end of the channel to the other. A
similar equation holds for the density nz of gas in the
other chamber V2,. we simply insert a minus sign, change

f il ter

FIG. 1. Two cells of volumes Vl and V2 are connected by a
filter of thickness L. Polarized gas flows from VI into the less

completely filled V2. The filter has C channels each of ra-
dius f'.
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1 to 2 everywhere, and evaluate the pressure gradient at
z L.

The pressure gradient in the channel can be deter-
mined by use of the equation of continuity for the densi-

ty: 8n/8t —8J/8z. It is easy to show that as long as

the total volume of the channels is much smaller than

that of either chamber the density quickly reaches the
quasistatic situation Bn/Bt 0 within the channels.

Thus we need only solve the equation

(d/dz) [(n/ rt) dP/dz ] -0.
In the case of a polarized Boltzmann gas, we have

P nkT and we use the expression for the viscosity in

the low-temperature approximation' which is

q
= (Si~mkT/32na') (I+ ', W—')/(I —m'). (4)

dn;/dt ( —1)'a; (n ~z n2 —), (s)

where a; xr CkT/(16riLV;). The solution of these
equations for the density in the filling chamber 2 is

Here m is the atomic mass and a is the s-wave scattering
length. Note that this expression is independent of the
density. Thus the density in a channel satisfies
(d/dz)(ndn/dz) 0. It is easy to solve this equation
subject to the boundary conditions n(0) n~, n(L) =n2.
The pressure gradient follows immediately so that Eq.
(2), and the corresponding one for n2, become

az y[ni(0) —nz(0)]e
n2t n~

a1+a2 y+(a/ —az)[n](0) —n2(0)](1 e—"') '

where n;(0) is the initial density in the chamber i, n(~)
is the final equilibrium density equal to N(Vt+ Vz), and

y 2n(~)(a~+az) is the inverse of the time constant.
The density in the emptying chamber 1 obeys a very
similar formula which follows easily from the fact that
n~Vt+n2Vz is a constant. Note that Eq. (6) reduces to
a simple exponential relation if V~ Vz.

For 3He gas at 1 K or dilute solutions at a concentra-
tion of, say, 10 4, the mean free path is on the order of
25 pm. Therefore, a channel radius somewhat larger
than this is in order. However, we note that Eq. (1) con-
tains no correction for slip. s Such a correction is densi-

ty dependent and would complicate the analysis consid-
erably. Since the slip correction is proportional to X/r, 7

we need to make this as small as possible while maintain-
ing a reasonable time constant. This is somewhat diffi-
cult because y-r . Nevertheless, with Vt Vz 10
cm3, a single channel having r = 30K, and L 2 cm, we

find a time constant of about a tenth of a second. Slip
should then cause only a few percent error if the scatter-
ing at the wall is diffuse. Another major consideration

n2(t) -n( ) —[gz/(g&+gz)][n&(0) —n&(0)] exp[ —(pi+

The time constant gives the ratio P/rI; P can be gotten
independently by means of a capacitance gauge. Again

slip (which is treated for Fermi gases in Ref. 7) needs to
be minimized. For a He concentration of 10 in a di-

lute solution and the experimental parameters quoted
above for the Boltzmann case, a time constant of about a
tenth of a second results here too.

In the Knudsen limit, A, ) r, which might be achieved

by use of a Nuclepore filter, channel flow does not pro-

vide a measure of the viscosity. Nevertheless, a rather
novel effect can be observed in this case when the gas is

degenerate. The idea is based on the fact that for a de

generate gas the flow down a channel is impeded by col-
lisions of those particles at the Ferm surface with the
walls. However, in a polarized g~s up and down spins

here is to have y « T~, the spin relaxation time, which

can be several minutes in cells having He-coated walls. s

In the degenerate case the viscosity has a quite compli-
cated dependence on polarization M which we do not

repeat here. However, the density dependence can be
written as rl K„n 3 with E„cont ai ni ngthe polarization
and temperature dependences. The pressure, in the
ideal-Fermi-gas limit, can also be put in the form

P Kt n, where Kr is a polarization-dependent param-
eter. When these expressions are put into Eqs. (2) and

(3) we find that the density distribution in a channel is

linear and that the densities in volumes 1 and 2 obey the

simple relations

dn;/dt -(—I )'&;(n) —nz),

in which g; (Shirr C/24LV;)(P/rt). Note that the ratio
P/rt is independent of density but, of course, depends on

polarization and temperature. The result is that in the
degenerate case the filling chamber density is given by

g, )].

have different Fermi velocities U so that the dominant
spin species diffuses down a channel at a faster rate, and
the polarization in the second cell will be initially larger
than the original polarization. %'e can write equations
somewhat analogous to those above except now we con-
sider them for individual spin-component densities n . In
a channel the current density for particles of spin cr can
be shown to be J —D 8nJ8z where the diffusion con-
stant is (up to constants of order unity) D rU . The
spin densities in cell 1 are therefore given by

tin 1 e —
Contr tlncr

(9)Isis D
et V, az, ,'

with a similar equation for n2 . To find the spin-density
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profiles in the channel we use the continuity equation
Bn /8t = —|)J /8z. (TI is assumed to be very long. )
Again we can consider this in the quasistatic case, which

gives Us

(r)/8z)(D Bn /Bz) =0.

We cannot take D out of the differentiation because
D —v =h(6' n~)' /rn depends on the density. The
density gradient is found from Eq. (10) to be given by
n'~ dn /dz 3(nz n—I )/4L. Putting this result into

Eq. (9) and into the corresponding one for nz gives

dn; /dt ( —I )'tt[n4Ig nz4g—], (1 1)

in which the coefficients are p; =3Ctrr h(6rr )' /
4mLV;. These equations can be reduced to an integral
for n2 that can be evaluated numerically. Ho~ever, be-
fore we present the results of such an analysis, we look at
a simpler linear case that can be handled analytically
and yet gives good qualitative results. What we do is to
replace the quantity in square brackets in Eq. (11) by

np (0)[nI —nz l. In this case the equations for nI
and n2 become

dn; Jdt ( —I)'g; (nI —n2 ), (12)

where g; Irr Cv (z 0, t =0)/(LV;). These equations
are similar to Eqs. (7) except that the coefficients are
now spin dependent. The solutions for the second-cell
spin densities are

nze«) -n~( ) —[(z~/((I.+ (2~) ~ [nI~(0) —nz (0)jexp[ —(gI + (z )t ). (13)

The time constants of nz+ and n2 differ as expected. If
v+ & U the gas initially flowing into cell 2 will be most-

ly up spina and the polarization will become larger than
in cell 1. This is most clearly seen by considering the
case in which the cell 2 is empty. 'o It is straightforward
to show that, for times small enough that the exponen-
tials can be expanded and terms beyond those linear in t
dropped, the polarization in chamber 2 is then given by

(1+M, )4' —(1+M Q)''
M2 , for small t

(1+M II) +(1+M )
(14)

where M~0 is the initial polarization in cell 1. If the ini-
tial polarization in cell 1 is small Eq. (14) reduces to

0.62
j I I I I

l
I I I I l

I I I I
l

I I I I
l

I I I I

0.60

0.58

M 056

0.54

0.52

0.50
1 I I I I I I I I I l I I I I I I I I I I I I I I I

0.0 0.5 l.0 l.5 2.0

FIG. 2. Polarization vs time of a degenerate Fermi gas in

cell 2 which is being filled by flow through a filter from cell 1.
Curves 8 and 8 are computed on the basis of the simple ap-
proximation, Eq. (12). Curves C and D are the results of a nu-

merical solution of the exact equations. The conditions in cases
4 and C are that cell 1 has an initial polarization of O.S and

cell 2 is initially empty. In cases 8 and D cell 2 initially con-
tains —,

' of the density of particles as in cell 1 and the initial

polarization in both ce11s is 0.5. In all cases the volumes of
both ce1ls are equal to V. The time parameter is r ter 6
x 13n nIt(0)]' /mvL.

3 Af ~ 0. This is the largest polarization enhance-
ment that can occur in a single pass through a filter,
even in the more complicated model given by Eq. (11).
The polarization as a function of time is shown as curve
3 in Fig. 2.

If the density of the filling cell is not initially empty,
then the polarization reaches a maximum before settling
back down to the initial equilibrium value. Curve 8 in

Fig. 2 shows this situation. It should be easy to adjust
the physical parameters in these experiments to establish
a reasonable time scale.

We now consider the exact case of Eq. (11). Numeri-
cal results are shown in curves C and D in Fig. 2 which
have the same initial conditions as curve A and 8,
respectively. The approximate treatment gives qualita-
tively correct results but persists at high polarization too
long.

There is an alternative experimental arrangement that
can also lead to a polarization enhancement. Instead of
Knudsen flow through a tube, we can consider effusion
through one or more small holes. The current density of
particles having spin o through a hole from a chamber
containing density n can be shown to be —,'6n v; the

predominant spin species flow out of the chamber more
quickly. The result for flow from one chamber to anoth-
er turns out to be described by Eq. (11) but with p; now
simply missing a factor of 2r/L.

We have shown how the viscosity of a polarized gas
can be measured by letting the gas flow from one
chamber into another through channels that are larger in
radius than the mean-free-path length. Such a measure-
ment is important in order to test theoretical predictions
that tell us that this quantity will increase dramatically
with increasing polarization for either a degenerate or a
Boltzmann gas.

%'hen a degenerate gas flows through a channel or an
opening smaller than the mean-free-path length, then the
flow rate is different for the two spin species. This can
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lead to a polarization enhancement. " Although this
enhancement can be as large as —', it may be difficult to
use in creating highly polarized samples for further ex-
periments because the density is small when the gas po-
larization is large. One might think of trying to set up a
multistage process in which the polarization is enhanced
many times in a continuous process analogous to that
used for purifying U. Whether this is feasible depends
on whether spin relaxation, including that taking place in

the filters, provides sufficient time.
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'0%e should point out that if the cell-2 density initially is too
small, the gas there may not be degenerate, nor will all of the
gas in the channels. This situation could probably be taken
into account only with difficulty. One way to avoid this is to
make sure to start the filling process with an amount of gas in

the second cell sufficient that there is degeneracy everywhere.
'%"e note that the polarization enhancement process is a re-

frigerator. The spin temperature of the enhanced gas is lower
than that of the original gas. The small density of the gas
should also limit any useful applications of this effect.


