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Dislocation Generation in the Two-Dimensional Frenkel-Kontorova Model
at High Stresses
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Dislocation generation is studied in a generalized two-dimensional Frenkel-Kontorova model which al-

lows consideration of dislocations of arbitrary Burgers vector and line shape. Two new mechanisms for
dislocation generation at high stresses have been found: (1) heterogeneous nucleation of dislocations on

preexisting dislocations and (2) generation of dislocation loops in the wake of a moving dislocation.
These new mechanisms provide an understanding of how materials generate the density of dislocations

required to accommodate arbitrary strains at high strain rates.

PACS numbers: 61.70.6a, 03.40.Kf, 61.70.At, 62.20.Fe

For stresses larger than the macroscopic yield stress of
a crystalline material, deformation is controlled by the
generation and propagation of dislocations. ' In crystals
deformed at high stresses, the dislocation density tends
to adjust itself in such a way as to accommodate the ap-
plied strain. While a number of mechanisms for disloca-
tion generation have been proposed and observed at low

strain rates, they do not account for deformation pro-
cesses occurring at high rates. 2 This lack of understand-
ing may be traced to our inadequate models of disloca-
tion dynamics which have been limited to zero-di-
mensional or continuum descriptions of dislocations. '

In this Letter, we examine mechanisms for dislocation
generation under extreme conditions. We find that at
high stresses and temperatures, dislocations nucleate
heterogeneously on preexisting dislocations. This new

result is obtained in the framework of a Frenkel-
Kontorova (FK) models which we have generalized to
two spatial dimensions so that transverse effects are in-
cluded systematically. 6 We perform finite-temperature
molecular-dynamics simulations on a two-dimensional
discrete lattice. The ability of the dislocation to deform
arbitrarily is an essential aspect of dislocation multiplica-
tion. %'e are able to treat not only edge dislocations but
dislocations of arbitrary Burgers vector, including screw
dislocations which are strictly transvere defects. While
dislocation stress fields decay as I/r, the stress fields in

the FK model decay exponentially. This deficiency is of
little consequence since dislocation dynamics is con-
trolled by the core which is properly accounted for in the
FK model.

The 1D FK model has been used extensively as a
description of a variety of physical systems. However,
the zero-dimensional nature of defects limits its utility as
a paradigm for systems where the defects are one dimen-
sional. awhile the present 2D results are couched in the
language of dislocation dynamics, the methods applied
and many of the conclusions dragon should also be ap-
propriate for descriptions of defects in other systems,
e.g. , weakly pinned charge-density ~aves, commen-

surate-incommensurate transitions, ' and domain-wall
dynamics in magnetic media. "

The Hamiltonian of the 2D FK model may be written
as HFx H?„„+H?«+H~?+HF, where
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Here the equilibrium lattice spacing is 2x and u;„and
?;j are the displacements of atom i,j in the x and y
directions, respectively. H1,t is the energy stored in the
square lattice of springs which connects each atom to its
nearest neighbors. The terms ly and l„are the lengths of
the springs connecting an atom to its nearest neighbors.
%e have taken the mass M 1, the spring constant
k 1, thus defining the time unit [(M/k ) ' 1]. The
term H~t is our generalization to 2D of the usual FK
substrate potential and thus models the influence of the
layer of atoms below our plane. The strength of the po-
tential, a, was chosen as —,

' to correspond to a Poisson ra-
tio of —,

' (a typical value for a metal). Here we have as-
sumed that the interatomic spacing in the plane is equal
to the interplane separation. Hp has been added to the
Hamiltonian to facilitate the inclusion of applied
stresses. Since a force is applied only to the atoms con-
nected by springs, forces in the x and y directions (f„
and fy ) correspond to shear stresses cr„, and oy„respec-
tively.

The equations of motion for u; J and U;J are obtained
from (1) and Hamilton's equations in the usual way. To
describe the interaction with a thermal reservoir at tem-
perature T, damping and noise forces have been added to
the equations of motion: F;"~ MI u; j+rl;"„(—t) and
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F," - —MI U;J+tl;" (r ). We have taken the correlation
function for the random forces to be &tl;eJ(r )tl;„'(r')&

2MI"knTb;, ; bj.~'(r —r'), where 8 is either u or U and

kn is Boltzmann's constant. The effect of the two terms
is to bring the system to thermal equilibrium, which of
course only is meamngful when f„ f» 0. The damp-

ing constant I was chosen such that the lowest-frequency
(nonzero) phonon in our 90X90 system is substantially
underdamped (i.e., I O.OOS). Periodic boundary condi-
tions were used. The stochastic equations of motion
were solved by a molecular-dynamics technique
developed by Greenside and Helfand. ' All runs were al-
lowed to equilibriate at the appropriate temperature pri-
or to the application of the stresses. All energies and

temperatures are measured in units where the maximum
of the potential is 4a.

The two basic excitations in this model are edge and

screw dislocations. These defects are schematically illus-

trated in Fig. 1. The diagonal springs in Fig. 1(b)
represent a consistent picture of the displacement discon-
tinuity observed along the slip plane of a screw disloca-
tion in a 3D crystal. An edge is defined as a dislocation
where the Burgers vector b is perpendicular to the dislo-

cation [ine. Similarly, a screw is a dislocation where b is

parallel to the dislocation line. In principle, however, for
any b the dislocation line may be of arbitrary orientation
and hence a dislocation may have both edge and screw
character. In our studies of the dynamics of straight
dislocations we have found a pronounced asymmetry in

the minimum force (stress) required to move a disloca-
tion (i.e., a Peierls barrier). The Peier[s barrier for an

edge dislocations'3 in our model is ~r = 10 7, while for a
screw dislocation the barrier corresponds to a=0. 1,
where the shear modulus is p 4n/3=13. 2. Asym-
metries in the Peierls barriers are commonly observed in

bcc metals (although smaller than found here) and have
been attributed to the geometry of the dislocation core. '

Even though the Peierls barrier is sensitive to the value
of a, ' the physical mechanisms presented below are in-

sensitive to the particular choice of a.
In addition to the Peierls barrier, the dislocation-line

energy (per unit length) also depends on the relative
orientation of the Burgers vector. This dependence is in-
dicated in Table I for dislocations oriented parallel to the
x axis. The energies were calculated from (1) with

HF 0. The energy of the edge exceeds that of the screw

by a factor of approximately 7. ' When a screw and
edge are combined such that b/2x [1,1), the line ener-

gy of the resultant dislocation is close to that of the in-

finitely separated, static screw and edge. This shows
that to lowest order the elastic fields of the screw and

edge do not couple. However, when the screw and edge
are very close together, the higher-order terms in the
Hamiltonian may become important. This is strikingly
demonstrated in the case of b/2n [1,—ll, where the
resultant line energy is identically zero. This dislocation
corresponds to two lines of atoms which lie exactly on
top of one another and across which the lattice is shifted

by 2n parallel to the line. All of the atoms lie at the bot-
tom of wells and all springs are at their equilibrium
length; therefore this dislocation has zero energy. In
atomic systems such situations are prevented by hard-
core atomic repulsions. The energy of the system is thus
unchanged upon collapse from two to one dimension, but
this is generally prevented by application of appropriate
boundary conditions.

While dislocation generation via homogeneous nu-

cleation does not occur at significant rates in 30 crystals,
we find that dislocations can be readily generated via
heterogeneous nucleation. In Fig. 2 we show the genera-

J El F
J E J L

'1 F
J L

J L J L1F JL1F 4E

TABLE I. Dislocation energies per unit length.

FIG. l. Excitations in the 2D FK model: (a) The edge
dislocation b/2x [O, ll, and (b) the screw dislocation,
b/2a' fl,ol, where the dislocation hnes are parallel to the x
axis. The crosses correspond to maxima in the substrate poten-
tial, the solid dots represent the particle positions, and the solid
lines connecting particles represent the springs.
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FIG. 2. Dislocation generation on a static screw dislocation
(dashed line). The applied force and temperature are f„

0.175 and T 0.15. The solid lines corresponds to disloca-
tions with b/2s [O, ll. (a)-(d) Times of 17.5, 30, 55, and 70,
respectively.

tion and temporal evolution of dislocations nucleated on
a preexisting static screw dislocation (o„, 0.175 =p/75
and T =0.15). The dislocation lines are drawn where
the displacement field is equal to x (or an odd multiple
thereof), thus indicating the center of the dislocation.
Several dislocation loops are seen to nucleate heterogene-
ously, but with b perpendicular to that of the preexistent
screw and parallel to the direction of the applied force.
As time progresses, these dislocation loops grow, even-

taully merging and forming much larger loops. During
this period of growth additional loops nucleate. The
dislocation loops appear to have preferentially nucleated
at kinks on the screw dislocation. We have observed
similar results where the initial, static dislocation was an

edge.
The loops in Fig. 2 grow preferentially in the direction

perpendicular to the static screw dislocation because of
the much lower Peierls barrier for edges than screws.
The faster motion of the edge segments of the loop re-
sults in an increased density of screw dislocations. Since
the energy of the dislocation containing both edge and
screw components depends on the relative signs of the
edge and screw, the loops nucleate on only one side of
the screw.

%hile the upper portion of the loop remains static,
only the section of the loop away from the screw gro~s.
The preexisting sere~ dislocation thus acts as a barrier
to the passage of the other dislocations. %hile the ap-
plied stress used in the simulation shown in Fig. 2 is in-
sufficient to separate the edge from the sere~, once three
concentric loops have nucleated [Fig. 2(d)l, the stress
field due to the dislocation pileup' is sufficient to cause

FIG. 3. Dislocation generation behind an edge dislocation
moving under the influence of an applied force f„0.175 and
T 0.15 at times (a) 0, (h) 20, (c) 30, arid (d) 40.

the first edge dislocation to dissociate from the screw.
To our knowledge, the prediction of heterogeneous nu-
cleation of dislocations on other dislocations has not pre-
viously been made since continuum elastic theories are
incapable of describing the details of the interactions
around the dislocation core.

%'hile the mechanism of heterogeneous nucleation of
dislocations described above relies on the fact that it is
easier to nucleate a dislocation in a region of the crystal
which is already distorted by other dislocations, disloca-
tions may also be heterogeneously nucleated when that
distortion is caused by phonons. For example, when a
straight dislocation approaches the speed of sound, the
phonons emitted are of sufficient amplitude to create a
pair of dislocations of opposite signs (this conserves net
Burgers vector). ' This phenomenon is known as
dislocation breakdown. We observe a similar phe-
nomenon when the dislocation is not constrained to
remain straight and is roughened by thermal fluctua-
tions. In Fig. 3, we show an example of such a case
where dislocations loops are being emitted behind a mov-
ing dislocation at a finite temperature (~„, 0.175
=p/75 and T =0.15). In this case, the stress moving
the dislocation was insufficient to cause either disloca-
tion breakdown or the homogeneous nucleation of dislo-
cation loops.

As the temperature of the system is raised, the equili-
brium roughness of a dislocation line increases. This in-
creased roughening causes the dislocation to pinch off
loops, which will decay in the absence of an applied
stress. %hile the application of a stress may allo~ those
loops to expand, an applied stress sufficient to move the
dislocation will result in the absorption of the loops
ahead of the moving dislocation. Further, a focusing ef-
fect due to the superposition of phonons from different
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sections of the temperature-roughened dislocation will

increase the local loop nucleation rate .Therefore, at suf-

ficiently high temperatures and stresses, a moving dislo-

cation will leave exanding dislocation loops in its wake,
as seen in Fig. 3.

Mechanisms for dislocation generation have been
known for decades (e.g., Frank-Read source, pole mecha-

nisms), ' but they require the formation of special spatial
configurations. At elevated temperatures and stresses,
additional mechanisms for the production of dislocations
are possible. We have demonstrated two such mecha-
nisms which are subsets of what we label the heterogene-
ous nucleation of dislocations. In both cases the hetero-
geneities responsible for nucleation are preexisting dislo-

cations. In one case the nucleation occurred on static
dislocations, but it can also happen as a strictly dynamic
effect. Unlike other mechanisms for dislocation genera-
tion, all dislocations in the crystal are potential nu-

cleation sites. Hence, while other generation mecha-
nisms may operate with greater frequency, these new

mechanisms for dislocation generation may dominate be-
cause of their much greater density. Although the
Frenkel-Kontorova model is a simplistic description of
atomic interactions in a crystal, its generalization to two

dimensions contains the essential physics to capture the
qualitative behavior of single- and multiple-dislocation
phenomena such as dislocation breakdown, dislocation-

impurity interactions, and dislocation pileups.
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