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Phase Diagram of Yukawa Systems: Model for Charge-Stabilized Colloids
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The phase diagram of particles interacting through a repulsive screened Coulomb (Yukawa) potential
has been calculated. Such interactions describe charge-stabilized colloidal suspensions and provide a po-
tential of variable shape which can be used to test general ideas about phase transitions, including the
phenomenological Hansen-Verlet and Lindemann rules. Competition between bec and fce solid phases
was explored through calculations of the free-energy difference. For a range of screening lengths we
found a transition from a low-temperature fcc phase to a high-temperature bcc phase.

PACS numbers: 64.70.Dv, 64.70.Kb, 82.70.Dd

Many physical systems with screened Coulomb inter-
actions can be described by repulsive Yukawa interparti-
cle potentials. One class of examples are dilute charge-
stabilized colloidal suspensions such as latex spheres in
water, micelles, and microemulsions.! Recently, such
suspensions have been found to form a variety of crystal-
line, amorphous, and liquid phases. Both equilibrium’
and nonequilibrium"? phase transitions have been ob-
served.

In this paper, we present a study of the phase diagram
of repulsive Yukawa systems using molecular dynamics
(MD). In addition to describing a variety of real physi-
cal systems, Yukawa systems provide a testing ground
for general ideas about phase transitions because the
shape of the potential varies continuously with the
screening length x~!. We compare our results with the
Hansen-Verlet® and Lindemann* criteria for the melting
transition over a wide range of screening lengths. In the
solid phase, we study the relative stability of the fcc and
bee structures. The range of stability of the bec phase
increases substantially as T increases. Transitions from
fcc to bee with increasing T are found in many elemental
metals.’

The energy per particle of a system of /V particles in-
teracting with a repulsive Yukawa potential is

U=E%U0§(a/rij)e’(p(—km/a ), (1)

where the sum is over all pairs of particles ij, Ug is a
measure of the interaction strength, and A =xa. Here a
is the natural length scale, a=n'" and n is the number
density. For point particles with charge Z and Debye-
Hiickel screening: Uo=2Z%¢?/ea and x*=4nnZe?/ckpT,
where ¢ is the dielectric constant of the medium. In gen-
eral the particles have finite size and the screening is not
described by the linearized Debye-Hiickel equations.
However, as shown by Alexander et al.,® the potential
can still be described in terms of an effective charge and
screening length.
It is convenient to define a dimensionless temperature

T=kgT/(Mwga?), )

where M is the particle mass and wg is the Einstein fre-
quency: the frequency of a single particle moving with
all other particles held fixed on a lattice. For a general
lattice wg =(w?), the mean squared phonon frequency.
For the Yukawa potential’

Moga?=22U)/3, 3)

where U (1) is the energy given by Eq. (1) with all parti-
cles at latt_ice sites. While we use wg for the fcc lattice
to define T, it differs by at most 0.1% from the value for
the bec lattice over the range of A where the two struc-
tures compete.

The stable phase of a Yukawa system depends only on
the dimensionless parameters A and 7. The phase dia-
gram is presented in Fig. 1. Since the interactions are
completely repulsive, there is no distinction between
liquid and gas phases. Both experiments on colloidal

FIG. 1. The phase diagram of Yukawa systems. Open cir-
cles indicate points where the liquid phase was stable. Points
where the fcc and bee solid phases are stable are indicated by
open triangles and open squares, respectively. The solid square
and solid triangle indicate cases that crystallized from the melt.
The dashed line separating liquid and solid phases indicates the
value of T where the rms displacement reaches 19% of a. The
dotted line is the harmonic result for the bee to fcc phase tran-
sition, and the solid line interpolates our MD results for this
transition.
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suspensions and our simulations are performed at con-
stant volume.

For T =0, the stable phase is determined by minimi-
zation of the total energy [Eq. (1)]. For the Coulomb
limit, A =0, the bcc structure is stable (the well-known
Wigner lattice). As A increases, the range of the poten-
tial decreases and nearest-neighbor interactions become
increasingly important. For A > A, =1.72 the fcc struc-
ture becomes stable because the nearest-neighbor dis-
tance is larger than in a bcc lattice of the same density.’
The number of nearest neighbors becomes irrelevant for
large A because of the exponential falloff of the potential.
The behavior at finite 7 for A =0 has been studied previ-
ously with the Monte Carlo (MC) method.® Pollock
and Hansen found a merting transition at 7" =0.0025
%+ 0.0002 which is indicated in Fig. 1.

We have filled in the remainder of the phase diagram
using MD simulations of between 432 and 588 particles
with periodic boundary conditions. A fifth-order predic-
tor-corrector algorithm was used to integrate the equa-
tions of motion with a time step, Az =0.06wg . The in-
teraction potential was truncated at r. =3.07a. Pollock
and Hansen used smaller systems but evaluated the full
Ewald sum for A =0. We have studied the effect of r,
and particle number on our MD results and lattice-
dynamics calculations.’ Finite size effects in 500 parti-
cle systems are of the order of 10% for all A. The effects
of finite r. become larger for A <2. For small A, Ewald
sums or larger systems are needed for accurate phase-
diagram calculations.

In Fig. 1, open circles indicate points where crystalline
starting states melted within ~9000Ar. These points
represent an upper bound for the melting transition be-
cause of the finite run times, and hysteresis in the first-
order melting transition. Pollock and Hansen’s analysis,?
based on MC and analytic fits to the free energy of solid
and liquid phases, suggests that the melting temperature
may be about 15% below these points. Crystallization of
supercooled liquid starting states was much slower. Only
two runs crystallized and each took about 50000Az. One
run crystallized into the bce phase and the other into the
fcc. These points are indicated by the solid square and
solid triangle, respectively, in Fig. 1.

Given the long times needed to crystallize our systems
from the melt, two other methods for determining the
solid-solid phase boundary were tried. Since fcc and bce
structures are related by a simple shear, transitions be-
tween them may occur rapidly in constant-pressure simu-
lations.!® However, for Yukawa systems there is a sub-
stantial region where both structures are metastable and
no transition was seen within our runs. Therefore, the
phase boundary was determined by calculation of the
free-energy difference following Rahman and Jacucci.!!
In Fig. 1 the points where the fcc and bcc structures
were found to have the lowest free energy are indicated
by open triangles and open squares, respectively. Very

near melting, our free-energy results could be checked
with standard MD runs: The stable phase was found to
be solid at temperatures where the other phase melted.
The region of bcc stability increases with increasing 7.
It is interesting to compare this behavior with the phase
diagrams of elemental metals. At atmospheric pressure
the low-7 phase of most elemental metals is either
close-packed (fcc or hep) or bee. As T increases some
elements melt without intermediate phase transitions,
but many close-packed elements transform to the bcc
phase before melting.> As a function of A one finds the
whole variety of phase behavior observed for elemental
metals.

Several attempts have been made to construct general
arguments for the increased stability of the bcc phase as
T is increased. Alexander and McTague'? constructed a
Ginzburg-Landau theory which suggests that the bcc
phase should always be stable just below the melting
curve if the transition is weakly first order. However,
this cannot be true for Yukawa systems because the bcc
structure is unstable against shear for A > 7.67. Even
low-T runs for A > 7.67 show a rapid transformation
from the bce to a distorted close-packed structure. It is
known'? that the bec structure is unstable against shear
for other stiff potentials: repulsive » " potentials with
n>7.

The increased stability of the bee phase relative to the
fcc phase as T increases implies that the entropy of the
bce phase is higher. Zener!* suggested that this was a
consequence of lower-frequency shear modes in the open
bee structure. Friedel'® noted that shear constants of bec
crystals are not anomalously low. He suggested that
since there are fewer nearest neighbors in the bcc struc-
ture the phonon energies are lower. However, at con-
stant density the nearest-neighbor distance is shorter in
the bce structure, and the six next-nearest neighbors are
only 17% farther away. Indeed, Eq. (3) implies that
(i) > (wfe) for A > 1.72 where the fcc phase has the
lower energy. For the Yukawa potential the lowest ener-
gy phase always has a higher entropy in the Einstein ap-
proximation, suggesting that it should remain stable as T
increases.

To examine the source of the entropy difference which
drives the fcc to bece transition, the phonon spectrum was
calculated as a function of A for both structures. In the
quasiharmonic approximation the entropy difference is
given by

AS =Shee = Siee =N "' ¥, In(0,/0}.), )

where the sum is over all normal modes. Trends in AS
and (wfc)/{wé.) may be different because they represent
different averages over normal modes. We find, as sug-
gested by Zener,'* that AS > 0 because the shear modes
in the bcc structure are softer. For A between 2 and 5
the sound velocities of shear modes are about 50% small-
er in the bce structure. As A— 7.67 the shear velocity in
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the bce phase goes to zero and the structure becomes un-
stable.

The fcc-bcc phase boundary calculated in the
quasiharmonic approximation is indicated by the dotted
line in Fig. 1. The solid line is a guide to the eye interpo-
lating between our MD results. In the low-temperature
limit the quasiharmonic approximation becomes exact
and the two lines converge. Anharmonic terms become
important at higher T, and the range of stability of the
bee phase is sharply decreased from the quasiharmonic
result.'® No evidence for the effect suggested by Alex-
ander and McTague is seen.

Our results for the melting transition provide a test of
phenomenological rules such as those of Hansen and
Verlet? and Lindemann.* Since the potential shape
varies continuously with A, any deviations from these
rules can be studied closely. We have determined the
value of (su?)={|r;(t) —(r;(¢t))|? (Lindemann) and the
peak heights of S(k) (Hansen-Verlet) and g(r) in a
range of temperatures around the lowest temperature
where a solid starting state melted.!” We assume that
the true melting temperature is about 15% below these
points as found by Pollock and Hansen® for A =0. (The
trends described below are seen for any uniform assump-
tion about the difference between 7, and the tempera-
ture where melting is observed.)

The peak value of g(r) at melting varies substantially
from about 2.3 for A=2 to 2.7 for A=12. This range
corresponds to a change in T of about 50% of T, at a
given A. The variation of the peak in g(r) reflects the
dramatic change in the shape of the potential. For
larger A, the anharmonic components of the potential
limit the closest separation of two particles more than at
smaller A. This leads to a sharpening of the nearest-
neighbor peak and a larger peak height at comparable
values of T/T,.

According to the Hansen-Verlet rule’ the height of the
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FIG. 2. The variation of (6u?/a® and the displacement rela-
tive to nearest neighbors du? with T, for A=5. The dashed and
dotted lines show the respective quantities in the harmonic ap-
proximation.
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first peak in S(k) for a cooled liquid reaches 2.85 at the
melting temperature. We find that the peak height is al-
ways near this value (£ 0.2) at melting. However, there
appears to be a systematic decrease in the peak height at
melting as A increases. More accurate simulations are
underway to test this observation and to correlate it with
the variation in the peak height in g(r).

We found that the Lindemann criterion gave the
closest correlation with the melting transition. The melt-
ing curve (dashed line) indicated in Fig. 1 gives the value
of T where (6u?/a®)'/? was equal to 19%, for the relevant
solid structure.'® Within our accuracy (~3%) the MD
results fall on a straight line which lies about 15% below
the upper bound for 7, set by the melted runs, and
tracks these results over the entire range of A. Pollock
and Hansen® found this value at the melting temperature
for A =0, and the value at melting for other potentials is
very close.'

The melting curve in Fig. 1 is strongly affected by
changes in the phonon spectrum and anharmonic terms
as A varies.’ If the phonon spectra and anharmonic
terms simply scaled with wg the melting line would be
horizontal.”! The melting line predictd by the low-T
quasiharmonic theory increases monotonically by a fac-
tor of 2 over the range of A shown. However, the rate of
increase is not as fast as in the MD results. As A in-
creases, anharmonic effects become stronger and in-
crease the value of T at melting.

The Lindemann criterion for normal metals is usually
evaluated from a Debye-model fit to the low-temper-
ature specific heat. Melting is found when the predicted
value of (5u%/a®"? is between 0.07 and 0.10. It is not
clear whether this range of values reflects a real varia-
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FIG. 3. The normalized force constant for lines of atoms
displaced along the [110] direction as a function of their dis-
placement relative to the lattice, for the indicated values of A.
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tion in (8u?/a?) or the inadequacy of a harmonic Debye
model. Our results are consistent with the latter con-
clusion. We find a constant value of (6u%/a?) at melting,
and that anharmonic terms and the shape of the phonon
spectrum can vary (u?/a?) by more than a factor of 2.

Figure 2 shows the variation of (8u?/a®) with tempera-
ture for A=>5. For low T, («*/a®) varies linearly with T
as predicted by the quasiharmonic theory. As T ap-
proaches 7. the value of (§u%/a®) rises more rapidly,
making it easy to pinpoint T.. It may seem surprising
that (5u%/a?) increases more rapidly than predicted by
the harmonic theory. Since volume is held fixed and the
interparticle potential is steeper as the particles move
closer, one expects the anharmonic terms to limit
(6u*/a®). In fact, if one plots the mean displacement of
a site relative to the center of mass of its nearest neigh-
bors (Fig. 2), one finds this quantity does increase more
slowly than T. The large values of (u%/a?) arise from

correlated motion of many atoms.

To explore the nature of the anharmonic terms we cal-
culated the energies of lines of atoms displaced along the
line relative to the remainder of an fcc crystal. In Fig. 3
the effective force constant, normalized to the value at
zero displacement, is plotted as a function of displace-
ment for the [110] direction. The force constant de-
creases with displacement indicating that anharmonic
terms actually soften the interaction. This explains the
increase in (6u?/a®) relative to the harmonic theory.
When the atoms are displaced by the interparticle spac-
ing along the line, the energy has returned to its original
value. Thus for some range of displacements the second
derivative must decrease. For the close-packed [110]
direction this softening begins at zero displacement for
A <13. The value of A where the effect of anharmonic
effects changes sign is smaller for less close-packed
lines.’

In conclusion, we have determined the phase diagram
for one of the classic interparticle potentials, the Yukawa
potential. This phase diagram should prove useful for
comparison with experiments as well as for provision of
tests for analytical calculations of phase diagrams, such
as those in the density-functional theories of freezing.
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