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We present evidence from numerical simulations for a first-order chiral-symmetry-restoration transi-

tion in QCD at finite temperature. The transition appears only for small quark masses. We use an exact
algorithm to incorporate the dynamical quarks.
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Hadronic matter at high temperature and density is
expected to undergo a transition to quark-gluon plasma.
The present planned heavy-ion experiments will be able
to investigate temperatures up to a few hundred mega-
electronvolts. It is therefore very important to under-
stand the nature of the transition and determine the tran-
sition temperature. The only quantitative tool available
to address this nonperturbative phenomenon is the nu-

merical simulation of lattice gauge theory. We have used
the exact algorithm of Scalapino and Sugar' to study the
phase diagram of QCD at small quark masses (rne ) using
staggered fermions. In this paper we present clear evi-
dence for a first-order chiral-symmetry-restoration tran-
sition at high temperature.

Simulations of pure gauge SU(3) show a strong first-
order transition at a temperature T, =Agg (MS denotes
the modified minimal-subtraction scheme). At this
transition the global Z(3) symmetry of the theory is
spontaneously broken. A nonzero expectation value of
the Polyakov line (L) in the high-temperature deconfined
phase implies a finite free energy for the quarks. A
second-order parameter, the chiral condensate &ZX) mea-
sured in the quenched approximation, is also discontinu-
ous at the transition. &X5, when extrapolated to tris =0,
changes from a nonzero value at low T to zero in the
high- T phase.

Dynamical quarks act as external fields and explicitly
break the Z(3) symmetry. (L) is still a measure of the
quark free energy but it is nonzero for all temperatures
because of vacuum polarization. (X55 remains a good or-
der parameter to study chiral symmetry. The only
theoretical understanding of the realization of chiral
symmetry comes from a renormalization-group analysis
of an effective-spin model in 4 —s dimensions. The con-

elusion is that QCD has a first-order chiral-symmetry
transition for %f» 3 and at mq 0. For T & T„one ex-
pects (XX)AO when extrapolated to me =0. For T ) T,
the chiral symmetry is restored, and consequently (ZX)

~me for small mv. This needs to be verified. Also, if, as
in the pure gauge theory, there is a discontinuity in (L ),
then we expect to see interesting thermodynamical prop-
erties of the quark-gluon plasma created in heavy-ion
collisions.

The expected phase diagram for QCD is as follows:
The confinement transition at me ~ extends to some fi-
nite mv in the me-T phase plane, and similarly the chiral
transition at mq 0 extends to some nonzero mq. The
questions to settle are whether these two transitions are
connected and whether the chiral transition with the
three physical light flavors is first order. The status of
the chiral transition is not clear. %e summarize the re-
sults for four flavors of staggered fermions obtained by
approximate algorithms. The most detailed calculations
are by Kogut and Sinclair who find a rapid crossover for
mq=0. 1 and 0.5. Extrapolating the coupling at the
center of the crossover to mv 0, they find that the tran-
sition coupling 6/g for N, 6 (4) is 5.01 ~ 0.025
(=4.9). Further, assuming that asymptotic scaling is
valid, they estimate the transition temperature to be

T, =(2.1 4~01) A~M. Similarly, Gavai does not find
evidence for a first-order transition. On the other hand,
Fucito and Solomon and Fukugita and Ukawa claim
that at these masses the transition is already first order.
They find hysteresis in their runs, i.e., two metastable
states. The chief criticism against the last two calcula-
tions is that the runs were not long enough for complete
thermalization. The algorithm used to simulate fermions
was different in each study and so the reason for conflict-
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FIG. 1. Plot of (XX& with %co-60 vs Monte Carlo sweeps at (a) p 4.8, m~ 0.025, (b) p 4.9, m~ 0.10, and (c) p 4.9,
rnq 0.05.

ing results may also lie in the nature of the bias intro-
duced by the approximations.

To address this issue we have made extensive runs us-

ing the exact algorithm. The largest lattice on which this
can be done with reasonable statistics is 4&4X4x4. In
exploring the small-mq limit we find evidence for the
chiral transition. Because of the small lattice size, and
the fact that N, =N„we cannot claim any quantitative
results for T,. However, the clarity in the signal of the
transition makes our qualitative result interesting. In
particular, it resolves the above-mentioned dispute on the
nature of the transition between the various approximate
algorithms.

In the exact algorithm the ratio of determinants
R=det(1+M 'bM) is calculated at each link update.
Since we use staggered fermions (four flavors), the algo-
rithm requires a calculation of a 6x6 block of M '. Be-
cause M ' is calculated with the conjugate gradient
(CG) iterative algorithm to some approximation, there
can be a systematic bias. We discuss this later. In a

Metropolis update, a link can be changed many times
without our having to recalculate M . The multihit al-
gorithm we use is that described in detail by Gavai and
Gocksch. 'o We use antiperiodic boundary conditions in
all directions. We update each link with fifty hits and
the acceptance is adjusted to = 30%. In solving Axe„,„
=MtM x«b, we define the convergence by C =(b
—Ax

~
b —Ax&/(x

~
x), which depends on the number of

CG iterations (Nco).
In our data all the observables, (ZZ), (L), Wilson loops,

and R, are correlated. We use (ZZ& to demonstrate the
transition. At 6/g2 4.8, mv 0.025, and with Nco =60
there is no indication of a transition [Fig. 1(a)1 in our
small data sample. At 6/g 4.9 and mv 0.1, one sees
only thermal fluctuations with Nco-60 [Fig. 1(b)l.
Similarly, for mv 0.05 we do not see a two-state struc-
ture [Fig. 1(c)], but compared to mv 0.1 the fluctua-
tions are larger. The situation changes at N1q 0025.
For Nco 30 [Fig. 2(a)], 60 [Fig. 2(b)], and 90 [Fig.
2(c)], we see metastability and a two-state behavior
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FIG. 2. Plot of &ZZ) vs Monte Carlo sweeps at p 4.9, m~ 0.025 and (a) Nco 30, (1) %co 60, and (c) Nco 90. The two-
state signal stands out in each case.
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TABLE I. Comparison of in(detR) for two configurations

separated by twenty sweeps at P 4.9, mq 0.025, and

Ngg 90. Also given is the determinant and the mean conver-
gence over twenty s~eeps.

Config. No. Accepted
ln(det R)

T1llc

In(dot R)
ln(det M) «C) x 107
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FIG. 3. Plot of (a) I & I loop, (b) &L) vs Monte Carlo sweeps
at P 4.9, mv 0.025, and Nco 90. The correlation with &X5
is striking for these observables.

characteristic of a first-order transition. To protect
against inadequate thermalization, we run long enough to
see flip flop between the states. In Figs. 3(a) and 3(b)
we also show the data for I x I Wilson loop and &L) in

one of the four directions (all four directions show similar
behavior). There is a clear correlation between all ob-
servables. We regard this as evidence that at small mq,
QCD has a first-order transition with discontinuities in

(XL), &L &, and Wilson loops. While the chiral and
thermal transitions need not have been related, the data
show that for T & T„ the system is deconfined and chiral
symmetry is restored.

To analyze the transition further we study &XX& as a
function of mz. In the confined phase we estimate
(X55 —0.3~m~ from the data shown in Fig. 2. To study
(X6 in the high-temperature phase, we made runs with

Nco 60 at 6/g 4.95 and m 0.05, 0.025, 0.02, and
0.015. %'e find a signal for the transition at the two
heavier et&, while the system is predominately in the
deconfined phase at the two smaller m~. Our estimates,
0.14(3), 0.07(3), 0.05(l), and 0.04(l), agree with the ex-
pected behavior (X6~mv.

%e now present a preliminary analysis of the sys-
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tematic biases in our simulation. Our implementation of
the CG algorithm tends to underestimate the effects of
the fermions, i.e., it tends to give too small a value for
S—:! In(R)! . We have studied this by changing a single
link and comparing the exact R with that calculated with
a variety of C(J sweeps. The exact R is obtained by cal-
culation of the determinants, before and after a change in
the link, by use of Gaussian elimination. At m~=0. 1,
A'gG, =60 suffices to give the exact answer, awhile for

30, S is underestimated by a few percent. For
m& 0.025, the algorithm requires NgG=90 to get 5
good to a few percent, while for NgG =30 the estimate of
S is poor. These estimates remain valid when we make
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multiple hits on the same link.
To study if there is an accumulation of the bias, we

compare the product of the accepted determinant ratios
(A —= lnR„, ) with the exact answer (T). The data for

mq =0.025 and NcG 90 are shown i.s Table I, together
with ln(detM) and (C). In the high-temperature phase
(1—10 and 36-41) one finds A «T, with only small devi-
ations from equality. On the other hand, the confined
phase (11-35) has A significantly less than, though
correlated with, T. This phase also shows a marked
deterioration in (C), suggesting that M has small eigen-
values not present in the high-temperature phase. The
difference between A and T is large, but it has been accu-
mulated over = 20X0.3x50x4X4 link changes, and so
corresponds to a tiny bias in R for each change.

The disagreement between A and T gets progressively
worse with decreasing Ngg, but C is consistently a factor
of =20 smaller in the high-temperature phase. Con-
versely, the bias decreases as mq increases. It is unob-
servable for mq 0.1, Ncp =60.

All this suggests that C «10 is necessary to avoid a
bias at 6/g2 =4.9, m~ 0.025. Our best data do not quite
meet this requirement, but the presence of the transition
for all values of Ago makes it very likely that the transi-
tion would remain for Ncg

To conclude, we show that there does exist a first-order
chiral-thermal transition at small mq. Its uncertainty in
previous calculations is due to its abrupt appearance at a
smaller mq.
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