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Massive, Unitary, Renormalizable Yang-Mills Theory without Higgs Bosons
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%'e present a variant of the Stueckelberg formalism for Yang-Mills theory where the Stueckelberg
scalar field is eliminated in favor of the gauge potential. Normally this leads to nonpolynomial interac-
tions. However, we point out that it is possible to pick a gauge where the nonpolynomiality disappears
and the resulting theory is power-counting renormalizable and unitary. This procedure allows one to
construct an electroweak model without the Higgs boson.
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The electromagnetic inverse-square law of force calls
for a massless photon. Yet there is no theoretical reason
why an Abelian gauge theory should not allow for a mas-
sive photon, since the resulting construct is both unitary
and renormalizable, by virtue of current conservation;
nature has simply not availed itself of this possibility.
On the other hand, the weak force is short range and the
weak-boson carriers are massive. Not surprisingly,
therefore, the few years before the advent of the stan-
dard electroweak model saw considerable efforts devoted
towards construction of massive, renormalizable, non-
Abelian gauge models. All these efforts failed, basically
for two reasons: Either the model was nonpolynomial'
(and nonrenormalizable if expanded in powers of the
coupling) or it was nonunitary (physical ghosts). It is

no wonder then that, apart from a few sporadic efforts, 3

incidental to other research, the enormous success of the
spontaneously broken electroweak theory has weakened
all subsequent investigations into massive Yang-Mills
theory. Yet the nondiscovery of the Higgs boson, so
essential to the standard theory, argues for continued at-
tempts to construct a massive non-Abelian gauge model.
In this Letter, we shall describe such an attempt which
seems to evade all the previous difficulties and may
deserve serious investigation as an alternative to the
Higgs mechanism.

It is well known that a "mass term" m2A2 added to
the Yang-Mills Lagrangean is not gauge invariant; for
electromagnetism this hardly matters because of U(1)
current conservation, but in Yang-Mills theory the prob-
lem is fatal and is one of the reasons advanced for in-

sistence upon bare, massless chromodynamics or flavor
dynamics —it is only thanks to the Higgs field or perhaps
because of spontaneous symmetry breaking that the final
vector states acquire mass. There is, ho~ever, another
way of constructing a massive gauge-invariant term and
this is by introduction of a Stueckelberg scalar field p, in

the adjoint representation of the gauge group, transform-
ing according to

U US; U =exp(igP); S =exp(i&).

Tr[(A U 't a—Ulg-)'] (2)

is gauge invariant. Unfortunately, one has now aug-
mented the original Yang-Mills theory and introduced
nonpolynomial interactions of the Stueckelberg field into
the bargain, causing havoc with renormalizability, given
our current perturbative technology.

However, suppose that we eliminate the Stueckelberg
field in favor of the vector field A, by solving the equa-
tion of motion for p,

a'q+a A ,'tg([A——,a„q]+a„[A,y])+o(g') -o
(3)

In principle, this can be done order by order in perturba-
tion theory. Equivalently, it is more efficient to solve the
simpler equation

iD„(U-'a~U) -g a A (3')

in powers of the coupling. The combination U(A+ia/
g)U ', with U determined by A according to the above
condition, then transforms gauge invariantly. That the
field U satisfying Eq. (3') has the correct transformation
property (1) is straightforwardly checked by note of two
facts: first, that for infinitesimal transformations,

~(U 'aU) = [a+U 'aU, U-'aU];--
and, second, that by a variation of Eq. (3'),

[D"(A),b(U 'a„U) —[a„+U-'a„U,A]] =o.

This means we are back to the original number of fields,
albeit with a nonlocal but gauge-invariant mass term

m'Tr[U(A)(A+iWg)U '(A)]'.

Another way to arrive at this term is to require that

It is then easy to show that the combination

A —U 'i aUjg

transforms homogeneously under gauge transformations
S. Consequently, the squared term
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—,
' A +G (A ) be gauge invariant, or

8.A =D„bG/hA„,

and look for solutions where G (A )~ —
2 A . A solution is

G(A ) =—,'8.Aa-'8. A+ —,'igA&[a„a '8 A, a-'a A]+0(g') (4')

and it coincides with the Stueckelberg method. In any event, the fact that the resulting expression is a complicated
nonpolynomial would indicate that we are no better off. Nevertheless, once we realize that the Stueckelberg p, or
equivalently G, vanishes in the Landau gauge (it is proportional to 8.A ) then we can claim that a real advance has
been made because we have at one stroke a massive, gauge inU-arianr, polynomial theory which is clearly power-
couniing renormalizable. It is important to emphasize that at this point we are no longer dealing with a conventional
Stueckelberg theory. Cornwall has thoroughly appreciated the significance of this approach and exploited this idea in
connection with nonperturbation behavior in QCD, whereas here we are advocating its use in traditional Yang-Mills
theory.

Our quantum version of massive non-Abelian gauge theory includes gauge fixing and ghost terms. Its Lagrangean
reads

L —,'Fz+ ,'—m2T—r[(A—e 's~i ae'g~/g) ]+88 A+ 2aB +roa D(A)ru, (5)

with p expressed in terms of A through its equation of
motion. Only when we go to the covariant gauge a 0
(Landau) can we treat the model in a realistic way, be-
cause all the nonpolynomiality then evaporates. In that
limit, the 8 field acts like a multiplier field, enforcing the
condition 8 A 0 and removing all problems with the
mass term. The vector propagator reduces to the naive

one,

~„„(k) -(—~„„+k„krak')/(k' —~')
and it has acceptable high-energy behavior. Further-
more, the entire theory is invariant under the conven-
tional Becchi-Rouet-Stora-Tyutin (BRST) transforma-
tions and satisfies the same gauge identities as in the
massless case. The nilpotency of the BRST variations
then ensures the unitarity of the theory in the asymptotic
limit for the physical subspace of state vectors (deter-
mined by zero BRST charge) according to the Kugo-
Ojima proof. The only reservation one might have
about the proof is that the mass term and the ghost prop-
agators are nonlocal in time because they carry 1/8;
however, it is possible to choose other gauges, such as
Coulomb or axial (see below) which are time local, and
the objection does not have the same force. In any event,
for a number of processes in one-loop order we have veri-

' ~MTr[[z/U(A+la/g)U '] +[z2U(A+i a/g)U

fied in detail that the cancellation of zero-mass singulari-
ties takes place, thereby confirming physical unitarity.

The only change to the renormalization program for
the massless case is that we must include a mass2 coun-
terterm in addition to the usual wave-function and
coupling-constant renormalizations [there is no need in

version (5) to modify the massless A or A3 renormaliza-
tions, which are in fact related]. A simple calculation
gives the self-mass renormalization to be

Bm2-m (13g C/64n ) ln(A /~ ),

which may be compared with the wave-function renor-
malization to this order,

Z 1+(3g C/96m )ln(A /m ).

The significance of this construction will not have es-
caped the reader and it is appropriate to mention an im-
portant application now. Primarily one would like to
avoid the Higgs mechanism (at least as long as the
Higgs boson remains undiscovered) for the electroweak
model. 6 I.et A z [I&0+~ z] and interpret S in (1)
as a U(2) gauge transformation. Because the combina-
tion U(A+ia/g)U is gauge invariant, we are able to
construct terms

] ]+ 2 mz Tr[[(z3cose —sine)U(A+i 8/g)U ']~/,

which~~~~~ the Z and the W —(but not the photon, by construction) to become massive. We have no reason todoubt
0 +

that the renormalization program can be pushed through and we strongly suspect that, apart from mass renormaliza-
t~ons, the other renormalizations are exactly as in the standard Higgs version, at least to order e2. %'e shall report on
details of these quantum corrections in subsequent work and provide the explicit proof of unitarity. One big bonus of
o«mechanism is the absence of quadratic infinities (connected with the Higgs boson) which makes the need for super-
symmetry less comp lllng' it cannot be denied that the present evidence for sup rsymmetry in particle physics is tenu
ous, at best.

The impression we have given so far is that the whole scheme will only work in Landau limit of the covariant gauge
class (5) Actually, the meth~ can be generaliz~ to other gauges, such as the axial gauge. Provided that U is still
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given in terms of A, we can also impose constraints like is as trivial as that.

where n is a nonderivative operator. As before, the U
satisfying (6) can be shown to have the required
transformation property (1). In this example, U

=exp(igp), where

y=(n. t)) '[n. A —g[(n t)) 'n. A,n 3]+0(g')].
(6')

This kind of gauge can therefore be implemented via the

Lagrangean

L = —4Fz+ —,'mzTr[(A —U ti8U/g) ]+Bn A

A nice application of this approach is to massive pure
QCD in two dimensions, which is known to be either
nonunitary or not conventionally renormalizable if treat-
ed in the normal way. 7 Suppose instead that we take the
Lagrangean to be (7). Let n (1,0) to make Ao 0
and, of course, insist upon U being fixed in terms of A, as
in Eq. (6); this choice then removes the A interaction
terms and all that survives is a free A1 with mass m. It

'T. Kunimasa and T. Goto, Prog. Theor. Phys. 37, 452
(1967); M. Veltman, Nucl. Phys. 87, 637 (1968), and 821,
288 (1970); H. Van Dam and M. Veltman, Nucl. Phys. 822,
397 (1970); A. Salam and J. Strathdee, Phys. Rev. D 2, 2869
(1970); A. l. Vainshtein and l. E. Khriplovich, Yad. Fiz. 13,
198 (1971) [Sov. J. Nucl. Phys. 13, 111 (1971)].

2E. S. Fradkin and I. V. Tyutin, Phys. Lett. 308, 562
(1969); G. Curci and R. Ferrari, Nuovo Cimento 32A, 151
(1976), and 3%A, 1 (1976).

sK. Shizuya, Nucl. Phys. 887, 255 (1975), and 894, 260
(1975), and 8121, 125 (1977).

4J. M. Cornwall, Phys. Rev. D 10, 500 (1974), and 26, 1453
(1982), has mainly focused on the light-cone gauge. He as-
cribes homogeneous solutions of Eq. (3') to "vortices that can-
not be gauged away,

" whereas we are ignoring these Gribov-

type ambiguities as they do not arise in a perturbative context.
5T. Kugo and I. Ojima, Prog. Theor. Phys. Suppl. 66, 1

(1979).
T. Sonoda and S. Y. Tsai, Prog. Theor. Phys. 71, 878

(1984). Our formulation looks superficially identical to theirs,
but actually differs radically from it, since we are not including
an independent Stueckelberg field.

76. Serge and W. I. Weisberger, Phys. Rev. 0 10, 1767
(1974).


