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A new Monte Carlo method is presented for simulations of systems with quenched random interac-
tions. The approach greatly reduces the long correlation times characteristic of standard methods, al-
lowing the investigation of lower temperatures with less computer time than previously necessary.

PACS numbers: 05.50.+q, 75.10.Hk

Over the past decade, there have been continuing con-
troversies about the properties of systems with quenched
random interactions, such as spin-glasses'™> and
random-field models.®~® Extensive work has been car-
ried out to answer some of the questions by Monte Carlo
simulations. While these efforts have been partially suc-
cessful, they have been greatly hampered by the ex-
tremely long relaxation times that are characteristic of
systems with frustrated interactions. Similar difficulties
are also found in some engineering applications involving
optimization subject to conflicting constraints.® In this
paper, we present a new approach to Monte Carlo com-
puter simulations, which provides rapid relaxation times,
making possible the study of equilibrium properties with
relatively modest amounts of computer time.

In constructing a Markov process for Monte Carlo
simulations, two conditions should be met: A sequence
of transitions with nonzero probability must connect any
two configurations, and the condition of detailed balance
must be satisfied. The standard Monte Carlo algorithm
satisfies both conditions, ensuring that equilibrium will
be achieved eventually (although not necessarily within
budget limitations).

By retaining standard Monte Carlo methods as part of
the new simulation, we satisfy the first condition and
provide a fast process for relaxation of local fluctuations.
Additional processes satisfying detailed balance are then
introduced to reduce relaxation times for large fluctua-
tions. This strategy has been shown to be effective when
the form of the important large-scale fluctuations is
known.!® The method described below provides for the
automatic recognition of important fluctuations in a
spin-glass.

To illustrate our method, we will discuss its applica-
tion to the Ising spin-glass,

H= ZB,'jKSiSj, €Y
i)
where s; takes on the values % 1 and the factor — 1/kgT
has been absorbed into the coupling constant K. The
B;; are dimensionless variables, which describe the
quenched, random interactions.
Instead of simulating different temperatures sequen-
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tially, we treat several independent “replicas” of this sys-
tem at different values of K simultaneously. By includ-
ing a replica index, n, we can describe the entire set of
replicas with a single Hamiltonian, modifying Eq. (1) to
become

HR =Z 2 B[jK(”)Si(")Sj(n). (2)
n {i,j)
Information is transferred by the “mixing” of two
neighboring replicas, by use of new variables, £, de-
fined at each site:

Si(" +1) — ti(n)si(")- (3)

The pair of replicas can now be represented by the vari-
ables {s™} and {™} and the part of the Hamiltonian
describing this pair of replicas becomes

Hpair = Z B,'J[K(") +K("+”t,-(")tj(")]s,-(")sj("). 4)
G

Changing s; while holding 1, fixed is equivalent to
changing both 5 and 5" *V. The effective interaction
between 5, and sj(") now depends on the sign of the
product t.-(")tj("). If the product is —1, the effective cou-
pling is proportional to K™ —K®*+1  which can be
small if the temperature difference between replicas is
small, even at low temperatures. If there is no frustra-
tion, the percolation representation'! can now be used to
simulate {s®}, with {t®} held fixed. However, if the
Hamiltonian contains frustration, this is only efficient
for replicas that are extremely close in temperature.

Equation (4) was simulated with a “cluster Monte
Carlo” technique, identifying clusters'? with a “tem-
plate” of sites for which the nearest neighbors have the
same value of #/”. A cluster Monte Carlo step allows all
spins in a cluster to be reversed. In terms of the original
spin variables, this corresponds to reversal of all values of
5 and 5% " in the cluster simultaneously.

The idea behind this procedure is that if the product
t,-("’tj(") is positive, the original spins in each replica have
the same relative alignment and are more likely to be
part of a favorable local configuration than if they are
aligned differently in each replica. This is the key
feature that allows our method to identify important
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clusters of spins. New configurations are generated in
high-temperature replicas, and energetically favorable
configurations are transferred to lower temperatures
through replica mixing.

To implement this procedure, each cluster c is initially
assigned a value r.=+1, and a cluster Hamiltonian is
constructed:

Hc|= Z kb,crl,rc. (5)
(b,c)

The new effective coupling constants kp . are found from
Eq. (4), by addition of contributions along the boun-
daries between the clusters. They tend to be small in
comparison with K ™ both because they are proportion-
al to K™ — K@+ and because of cancellations between
frustrated and satisfied interactions.

After performance of a standard Monte Carlo simula-
tion with the cluster Hamiltonian, Eq. (5), the new
values of s{ (for fixed #,”) are found by multiplication
of the old values by r. for the appropriate cluster. The
new values of 5;"*! are then found from Eq. (3).

The complete simulation procedure consists of a sweep
of all replicas with standard Monte Carlo procedures,
followed by application of replica Monte Carlo tech-
niques to all pairs of replicas at neighboring tempera-
tures. One full sweep involves a total of three updates
for each replica (except the replicas at the highest and
lowest temperatures), since each replica is mixed with
both neighboring replicas.

The gain in efficiency requires the use of both replica
mixing and cluster Monte Carlo computation. With just
replica mixing and standard Monte Carlo procedure,
many bonds are double strength and the simulation is
very inefficient. Without replica mixing, all couplings
remain strong and we cannot identify useful clusters.

For our calculations, two complete sets of replicas
were used. Each set had the same distribution of tem-
peratures, and all replicas were subject to the same
quenched random bonds {Bi,,-}. The spins {s;} in each
replica in each set were initialized with different random
numbers.

The use of two sets of replicas provides a direct con-
sistency check and allows a convenient calculation of the
overlap between two independent replicas at the same
temperature.'®> For each temperature, we compute

q(n) =N—‘Z,~Si(n'l)si(n'2), 6)

where the extra indices 1 and 2 refer to the two indepen-
dent sets of replicas, and NV =/4 is the total number of
sites. There is clearly a close connection between the
variables {t ™}, introduced in Eq. (3), and the Parisi or-
der parameter.'3

To illustrate the rapid relaxation achieved by the new
method, we simulated the two-dimensional Ising spin-
glass, with B; ; taking on the values & 1 with equal prob-
ability. Two sets of up to 32 replicas were simulated,

2608

with lattice sizes ranging from 4x4 up to 128x128. The
longest runs for the largest lattices were 1.8 % 10* sweeps,
which far exceeded the longest correlation times.

Figure 1 shows the correlation time 7 as a function of
the dimensionless inverse temperature K, with the results
of a standard simulation (for some of the higher tem-
peratures) shown for comparison. 7 was obtained from
the integral of the time-dependent correlation function
associated with the absolute value of q("):

(lq(todg o+t |)—<(|q])?
(g |»—<lq])?

Published correlation times for standard Monte Carlo
methods!*!® are even higher than those shown because
of the use of different correlation functions, which were
inappropriate for comparison since they vanish for the
new algorithm.

The data shown are from runs on a 32x32 lattice. Es-
timates of correlation times for larger and smaller lat-
tices showed no significant size dependence, within sta-
tistical errors.

In comparing these correlation times with those of
standard Monte Carlo determinations, the question of
whether simulation of 32 replicas reduces the efficiency
by a factor of 32 arises. The answer depends on what is
needed. If data are required at only a single tempera-
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FIG. 1. Semilogarithmic plot of the correlation time as a
function of K for the two-dimensional Ising spin-glass
{B;j==*1} on a 32x32 lattice, with 4.2x10° sweeps. The
correlation times for replica Monte Carlo computation are in-
dicated by circles, with the results of a standard Monte Carlo
simulation (1.6 10° sweeps) indicated by crosses for compar-
ison.
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FIG. 2. Log-log plot of the spin-glass susceptibility as a
function of the dimensionless inverse temperature K for the
two-dimensional Ising spin-glass {B;;= %1} on a 128x128
lattice, with use of several bond distributions with up to
1.8x 10* sweeps.

ture, this feature might be undesirable. On the other
hand, for most current work thermodynamic behavior is
of interest over a range of temperatures, so that this is
not a drawback.

Our current program, which was written for clarity
and ease of modification during development, requires
about a factor of 7 more CPU time per site than a simi-
lar standard Monte Carlo simulation. Including the time
for calculation of correlation functions reduces the fac-
tor. We expect future versions of the program to be even
more efficient.

Figure 2 shows the spin-glass susceptibility
Xsg=N<{g?* as a function of K from an average over five
independent random bond configurations on a 128 x128
lattice. Note that the largest coupling (lowest tempera-
ture) for which McMillan!# obtained reliable data was
K =1.16. Data are consistent with the hypothesis that
the transition temperture vanishes,? with the spin-glass
susceptibility diverging roughly as T ~>3, which is a
larger exponent than found in previous work.!>!®¢ How-
ever, it is equally compatible with a transition in the
neighborhood of K =3.6. More work is necessary to
clarify the situation.

The application of these simulation methods to other
models is straightforward. A magnetic field, either uni-

form or random, presents no problems. Longer-ranged
interactions can also be introduced, although it might
prove useful to modify the definition of the template to
control the average size of clusters. One possibility
would be to demand that neighboring spins have the
same relative orientation in other pairs of replicas to be
in the same template cluster. Any combination of the
variables that remain fixed during one Monte Carlo step
is allowed. Models with different spin symmetry, such as
the XY model, etc., can be treated with an appropriate
generalization of Eq. (3). Since one of our main pur-
poses in the present work was to test the method, we kept
the two sets of replicas completely independent. Howev-
er, for optimal efficiency in future work, information can
be exchanged between the two sets by the mixing of re-
plicas at the same temperature with a modification of
Eq. (4).

Computations were performed on the Cray X-MP/48
at the Pittsburgh Supercomputing Center. This work
was supported by National Science Foundation Grant
No. DMR-8403972.

Note added.— Since we submitted this paper a Letter
by Singh and Chakravarty!” has appeared, confirming
the value of y=15.3, by use of high-temperature series
expansions.
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