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+e have developed a se]f-cons&stent multi-ion screening formalism which, unlike conventional treat-
ments, explicitly accounts for the fact that free electrons cannot screen a given donor in a multi-ion sys-
tem as effectively as they can screen the same donor in a single-ion system. In uncompensated, metallic
Si:P at low temperatures, employment of the "multi-ion" screening length significantly improves the
agreement between theoretical and experimental electron mobilities.

PACS numbers: 71.55.Fr, 72.20.Jv

In this paper, ~e present a self-consistent formalism
for the screening of ionized impurities in an uncompen-
sated semiconductor. In contrast to previous treatments
of the problem, we explicitly account for the fact that
free electrons cannot screen a given donor in a multi-ion
system as effectively as they can screen the same donor
in a single-ion system. On the basis of the corrected
scattering potentials, we calculate improved theoretical
electron mobilities as a function of ND for low-

temperature n-type Si.
The inadequacy of previous treatments is most easily

understood if we first consider the "tight-screening" re-

gime, where the screening length calculated by the con-
ventional theory is much shorter than the distance be-
tween impurities and neighboring potentials do not over-

lap significantly. This occurs, for example, in heavily
doped n-type Si at low temperatures. (At ND 10'
cm 3, the average distance between impurities is nearly
seven times the Thomas-Fermi screening length. ) The
final results of this paper, however, will be in a form
which applies to any uncompensated semiconductor.

Consider a large sphere of volume V containing a sin-

gle donor as well as a free-electron gas of density n The.
excess charge density at position r due to redistribution
of the wave function for state i is

p;(r) - —e[( q;(r) (' —
( ef(r) ('I,

where 4; is the perturbed wave function for the state
and 4'; is the free-electron wave function. Equation (I)
may be summed over electron states to give the total ex-
cess charge at position r:

p(r) -g p;(r)fp(E )

where fp is the Fermi distribution function and E; is the
energy of state i We obtain p.;(r) from a lowest-order
Kohn-Sham calculation. ' In this method one solves
Poisson's equation and the Schrodinger wave equations
for the various electron states simultaneously. Although
the general solution requires a considerable amount of
numerical computation, 23 it is useful to consider an ana-
lytic form which is valid to terms linear in the potential.
It will be sho~n in a separate paper that if exchange and

correlation effects are ignored, one obtains"

pt(r) = ey(r)/2VE;,

where p(r) is the screened potential. It is easily demon-
strated that when this form is employed in the sum over
electron states in Eq. (2), the charge density p(r) reverts
to the conventional linearized Thomas-Fermi (LTF) re-
sult. s The solution to Poisson's equation therefore yields
a screened Coulomb potential,

y(r)- —e'e ' " "/xp[r —r, ~, (4)

where X, is the screening length, xp is the static dielectric
constant, and r/ is the position of the impurity. In the
LTF approximation, k is given by

4rrne' &-i/2(tl)
Xo

xpkaT Vi/2(ri)
'

where P~ is the Fermi integral of order p and

ri EF/kaT is the reduced Fermi energy. While LTF
provides a useful lowest-order approximation for the
single-ion potential, we now show that if one follows the
usual procedure for generalizing to a multi-ion system,
physically unreasonable results are obtained.

For a single donor at position r/, the total screening
charge contributed by state i is given by

q;/ „d3rp;(r) —2rre3Z'/VxpE;, (6)

~here the latter result is obtained following evaluation of
the integral with use of Eqs. (3) and (4). In LTF, the
net multi-ion potential is simply a linear superposition of
single-ion potentials:

Jv~ 2
—(r —rj (/x

yT(r) - —g (7)
xo r —rj

~here JVD is the number of donors in the system. The
total screening charge contributed by a given electron is
then

2~woe'~'
g. ~ g q. .

where ND ÃD/V is the donor density, which is equal to
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n for an uncompensated semiconductor.
In LTF, the weighted sum of Q; over electron states

gives a net screening charge which exactly neutrahzes
the donor charges,

g, ( Q;—/e) fp(E;) -&D.

However, a closer examination of Eq. (8) shows that this
leads to an inconsistency. From Eq. (8) one fmds that
—Q;/e &1 for high-energy electrons; that is, a given
electron's total charge —e cannot be completely devoted
to screening. On the other hand, for low-energy elec-
trons —Q»/e & 1, which indicates that the assumed con-
tribution to the screening is greater than the available
charge. This is physically unreasonable since we are
specifically considering the regime where LTF theory
predicts no significant overlap of neighboring donor po-
tentials (the same electron may not contribute to the
screening of more than one donor).

In a more realistic calculation of the screening, we
must require that —Q»/e «1 for all electrons. The sim-

plest way of accomplishing this is to multiply the charge
density for state i in Eq. (3) by an additional factor S».

p (r) S»p»(r),

where

4/E», E; &8,
S'E) 'i, E, e,

g, (—
Q,"/e)I. (E, ) -gwD. (i4)

The restricted region of integration also causes the elec-
tron charge per donor q»J to be smaller by the same fac-
tor. By use of Eqs. (6), (8), and (10), the total screen-
ing charge for a given state i becomes

Q»" —2»rgNne3%, 2S /»rpE».

Again, we must not allow this charge to exceed —e. In
Eq. (11) for S», we therefore set

unnecessary to satisfy Eq. (9).
Although we do not require that each donor be "fully"

screened independently of the others, there must still be
enough electron charge available to provide screening
out to the overlap region. "Complete" screening of a
given donor would require that the excess electron
screening charge integrated over all space add up to ex-
actly —e. Here we define g to be that fraction of the to-
tal which would be contained within a sphere of radius D
surrounding the donor. Using the fact that p(r)CL&(r),
we obtain

g 4»r„»I»(r)r dr/4»r„p(r)r dr

-1—(I+D/Z )e """,
where the "multi-ion" screening length X»»r will be de-
fined below. We now rewrite Eq. (9) to reflect the re-
laxed requirement that the total donor charge to be
screened has been reduced by a factor of g:

Eq 2»rNne X, /»rp. (i2) Eq' 2»rgNnezkg/»rp. (16)
Using Eqs. (6) and (8), one immediately obtains for the
corrected screening charge Q»' S»Q».

Since —Q»/e for low-energy electrons has been effec-
tively decreased (it may no longer exceed unity), we find
that Eq. (9), which assures the complete screening of all
donors, is no longer satisfied. While each low-energy
electron (E &Eq) now contributes a charge of exactly
—e to the screening of the donors, the high-energy elec-
trons (E & Eq) do not screen effectively and each contri-
butes less than its total charge. Since n ND, this
means that the donors will not be fully screened. Simply
changing the screening length from Xp to some higher
value A,

' does not remove the apparent difficulty, since no
matter how much the screening length (and hence Eq) is
increased, at finite temperatures there will always be
electrons in the highwnergy tail of the Fermi distribution
which are not fully devoted to screening. We conclude
that Eq. (9) can never be satisfied. However, the failure
to satisfy Eq. (9) is not a drawback as long as neighbor-
ing potentials overlap somewhat. At distances great-
er than half the average interdonor separation, D

(4»rND/3), it is unnecessary to insist that each
donor be fully screened, only that overall charge neutral-
ity be preserved. 7 This considerably relaxes the magni-
tude of the total screening charge required, and makes it

The screening charge requirements may now be ful-
filled by our adjusting the screening length A,se until Eq.
(14) is satisfied. This condition may be written in the
compact form

where

and

f '(z'»'2/z )fpdz+ J z i~&fpdz

J z 'lzIpdz

Fq' 2ggWgpe 35~

kaT xpkaT

(i8)

(i9)

We refer to ksr as the "multi-ion" screening length be-
cause its value is quite sensitive to the interMonor spac-
ing (through the factor g).

It should be observed here that we have shown the
"tight-screening" hmit to be unphysical, since Eq. (14)
can never be satisfied unless neighboring impurity poten-
tials have at least a modest amount of overlap. We con-
clude that ionized-impurity scattering in a semiconduct-
or is intrinsically a multi-ion process.
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Free-carrier transport properties may now be calculat-
ed by the usual methods, except that the corrected
screening length )t.~ should be used instead of A,o. We
consider the specific case of electron mobilities in heavily
doped Si:P in the low-temperature limit. Ionized-
impurity scattering has been treated by the partial-wave
phase-shift method. Silicon parameters were the same
as those employed in Ref. 9, where temperature-
dependent mobilities were calculated for samples having
varying degrees of compensation. For electron densities
between the critical density for the metal-insulator tran-
sition, n, (=3.8x10's cm 3), and 3&&IOzo cm i, the
X~ which satisfies Eq. (17) is found to be 1.2 to 1.4
times Ao. Furthermore, the parameter b 4k2Az is on
the order of unity in this regime, which means that the
calculated mobility is quite sensitive to changes in the
screening length. This is illustrated in Fig. 1, which

compares mobilities obtained with use of the "multi-ion"
screening length k~ (solid curve) with results of the con-
ventional theory (dashed curve) and with experi-
ment. ' ' The figure shows that use of the conventional
screening length leads to mobilities which are too high

by as much as a factor of 4 near n, The. mobility
correction is largest at the lower densities where the
small electron Fermi wave vector leads to smaller b and
hence scattering cross sections which are much more sen-
sitive to changes in the screening length.

The agreement with experiment is much better when
the more consistent treatment of the screening is em-

ployed, although it should be remembered that there are
additional higher-order effects which can lead to theoret-
ical uncertainties. '3 For example, Krieger et al. ' ' have
suggested that the large discrepancy between the conven-
tional theory and experiment may be due to the effect of
conduction-band anisotropy on the screening. However,
the more recent results of Saso and Kasuya for germani-
um, which has an electron effective mass even more an-
isotropic than that of silicon, seem to indicate that
screening anisotropy has a relatively small effect on the
calculated mobility. Since we have assumed the elec-
trons to be free and have ignored localization effects, the
theoretical curves in Fig. 1 naturally do not reproduce
the precipitous drop of the mobility with decreasing elec-
tron density starting at n slightly above n, .

Summarizing, we have shown that conventional treat-
ments, which assume that the screening length calculat-
ed for a single-ion system will be appropriate when ap-
plied to a multi-ion system, overestimate the ability of
the free electrons to screen all ions at the same time. To
correct this shortcoming, we have developed a simple,
self-consistent screening formalism based on the require-
ment that no electron state should contribute more than
—e to the net screening charge. In some regimes, the
correction to the screening length has a signiTicant effect
on calculated electron mobihties. The altered screening
length also has implications for the nature of the metal-
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FIG. 1. Theoretical (curves) and experimental (Refs.
10-12) (points) electron mobilities for uncompensated Si:P ex-
trapolated to the low-temperature limit. The dashed curve was
obtained with use of the conventional screening length Xp while

the solid curve was obtained with use of the multi-ion screening
length A,~. The theoretical curves were corrected for the Hall
factor rH (including anisotropy).

insulator transition. In a future paper, we will discuss
the generalization to compensated semiconductors.
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