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New Pore-Size Parameter Characterizing Transport in Porous Media
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%e introduce a well-defined geometrical parameter, A, related to dynamically connected pore sizes in
composite materials. A describes the effects of an internal boundary layer on a variety of processes in-
cluding electrical surface conduction, high-frequency viscous damping of acoustic waves, and healing
length effects in fourth sound. %e argue that A is also related to the dc permeability to flow of a viscous
fluid.

PACS numbers: 73.25.+i, 47.60.+i, 62.90.+k, 67.40.Hf

Fluid-saturated porous media arise in contexts as dif-
ferent as polymer gels, catalytic beds, and sedimentary
rocks. These systems exhibit a wide range of unusual
phenomena and are, in some respects, different from ei-
ther liquids or solids. While recent authors have devoted
considerable attention to porous media, our understand-
ing of the basic physics of these composite materials is
still at a fairly primitive stage. It would be particularly
valuable to have a manageable set of geometrical param-
eters in terms of which the transport properties of porous
media could be described. Obvious candidates are the
porosity (the dimensionless pore volume) and the ratio of
pore volume to surface area (a characteristic pore size),
but these parameters are influenced by isolated sections
of the pore space that do not contribute to either electri-
cal or fluid flow. In this Letter we introduce a new

length parameter, A, which is an intrinsic measure of in-
terconnected pore size and is directly related to trans-
port. In discussing a range of experiments influenced by
surface effects involving the pore-grain interface, previ-
ous authors' have relied on ad hoc "effective radii" or
"effective surface areas. " We show that the parameter
A (1) has a precise definition in terms of the solution of
the potential flow problem and is readily calculated in a
variety of physical models, (2) leads to a unified descrip-
tion of seemingly unrelated phenomena (the value of A
deduced from one experiment can be used to predict the
results of another), and (3) may provide a long-sought
link between electrical conductivity and the dc permea-
bility to flow of a viscous fluid.

Consider electrical conduction in an insulating porous
medium saturated with fluid of conductivity a(r). Sup-
pose that such a cube, with edges of length L, is placed
between bus bars across which there is a potential differ-
ence hy. The microscopic potential y(r) obeys the iden-
tity

&. ly(r)a(r)&y(r)] -a(r) I ~y(r) I'.
On integration over the volume of the pore space, the
effective conductivity is exactly related to a(r) and y(r)
by

'I. '„a(r) )&y(r) ('dV.

In a case of particular importance, the conductivity of

the pore fluid is uniform h.e., cr(r) af, y(r) yo(r)]
and it is conventional to introduce the formation factor
F—af aeff . Let the microscopic conductivity be per-
turbed to cr(r) af+Ba(r). There is a corresponding
change, y(r) yo(r)+By(r), in the microscopic poten-
tial, but, because By(r) vanishes on the bus bars, there is
no first-order contribution to a,tt from terms explicitly
containing By. [We have

a,rt F 'af+ ( Ay) L 'J Ba(r) I Vyo I
'dV

+0(BH),
the first two terms being analogous to the Born approxi-
mation in scattering theory. ] Consider perturbations of
the form bcr(r) f(e) in which e is a local coordinate
measured from the pore wall into the conducting region.
We assume that the range off is very small compared to
the sizes of the pores, so that locally the walls appear to
be flat on a length scale comparable to the range of f.
Z, —=ff(e) de is the interfacial conductivity and it fol-
lows that

a,«-F-'{af+2Z, /A]+ O(Z,'), (1)
where the quantity A has dimensions of length and is

rigorously given by

2 f l&yo«) I

f I Vyo(r) 12dI'p

Integration in the numerator of (2) is over the walls of
the pore-grain interface; that in the denominator is over
the pore volume. Thus, one accounts for the leading ef-
fects of surface conduction by means of a perturbation
theory in which the relevant parameter, 2/A, is an effec-
tive surface-to-pore-volume ratio wherein each area or
volume element is weighted according to the local value
of the field Eo, which would exist in the absence of the
surface mechanism. This weighting eliminates contribu-
tions from the isolated regions of the pore space that do
not contribute to transport. A is a parameter charac-
teristic of the geometry of the porous medium; a deter-
mination of A from one experiment is immediately
transferable to another.

How does one calculate A'? Any model system for
which a theory of bulk conduction exists automatically
yields A simply by the carrying out of the indicated in-
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FIG. l. Variations in M, V~/S, F, A, and ko for shrinking-

tubes model plotted against the porosity. A and Vi,/S are nor-
malized to co, F is the formation factor times col 2 (where I ls
the tube length), and ko is the permeability multiplied by
~2 -4

tegration in (2). An example is the "shrinking tubes"
model in which the pore space is pictured as a simple
cubic array of tubes whose initial radii, fr], are specified
in terms of a distribution P(r), and the porosity is then
reduced by random shrinking of the tubes by a factor x.
In Fig. 1 results are shown for the specific choice P(r)

co ' exp( —r/co) and x 0.5. Note that A decreases
more rapidly as a function of porosity than the pore
volume-to-surface ratio. A second class of models in-
cludes those in which the porosity decreases by uniform
growth of the insulating phase into the pore space. The
growth of the solid phase can be viewed either as a
change in F due to a change in p or, equivalently, as a
surface layer perturbation. From (1) we have

2 dlnF S S

where p is the porosity. (Note that this relation between
A and the ratio of pore volume-to-surface area is nor sat-
isfied by the shrinking-tubes model because there the
mechanism by which porosity decreases is quite dif-
ferent. ) As long as there is no clustering, the high-
porosity behavior of this model is independent of the ar-
rangement of the sphere centers. For suspensions
(0.40 (p ( 1.00), it is known experiinentally that
rrr (p) = 1.5. It then follows that A 2pd/9(l —p)
where d is the grain diameter. Values of A calculated
from Eq. (3) are presented in Table I along with the
relevant experimental values discussed below.

We now summarize some of the experimental situa-
tions in which A appears.

(I) SIialy sands —T.he most direct realization of (2)
occurs in the electrical conductivity of sandstones in

which the (insulating) grains are coated with appreciable
amounts of clay minerals. '2 Dry clay minerals usually
contain charged impurities which are balanced by
counter iona bound to their external surfaces. However,
once the pore space is saturated with brine, the hydrated
counter ions become mobile within a layer (whose thick-
ness, h, depends on the brine salinity but is typically less
than 40 A) surrounding the clay particles. Surface con-
duction due to the counter iona then proceeds in parallel
with the ionic conductivity associated with the brine. As
typical pore sizes are greater than 1000 A, the first re-
quirement for the validity of (1) is easily fulfilled.
Empirically, one finds that for "large enough" pore-fluid
conductivity, there is a linear relationship which is com-
monly written as '

rr, rr F ' lcrf +BQ„}.

Here Q„ is the density of counter ions per unit pore
volume and B is the equivalent conductance per ion, as-
sumed to be the same as that of the bulk fluid. Equa-
tions (1) and (4) are identical if 2/A is replaced by S/V»
because Q„n, (S/V~) where n, is the surface charge
density of the clay mineral and Z, n, B. If the pore
fluid conductivity, crf, is reduced below BQ„ then rr, rr

TABLE I. Measured and calculated values of A and predicted permeability ratio M (see
text).

Technique

Grain

diameter

(pm)

2&d
9(l —ii)

(pm)

A

(Expt. )

(pm) (pm)'

First sound'
First sound'

First and second
sound

Second soundb

Fourth sound'
Fourth sound'

0.43
0.41

0.41
0.3S
0.82
0.60

SOO

200
S.OOx10 '
9.0x10 '

12.6
17.0

77.2
24

S.06x 10
3.0x10 '

12.4
17.9

S3.2
19

1.30x10 '
24x10 '

7
12

1.36
1.44

Reference 5.
bReference 4.

cReference 3.
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departs from the linear prediction of (4) (Ref. 1). It has

been argued that this is due either to the breakdown of
the assumption it/A«1 (which seems unlikely), to a
change in the surface ionic mobility (i.e., a change in 8),
or to the importance of the neglected diffusion current at
low salinities. Alternatively, we suggest that the de-
crease in o,rr simply reflects the fact that (1) is valid

only when 2X,/A«o/. To investigate this possibility we

performed numerical calculations on a grain consolida-
tion model in which the grains were coated with a uni-

form layer of thickness h and conductivity cri, and the
conductivity of the pore fluid, aI, was varied. (This
model begins, in the high-porosity limit, with a simple

cubic array of identical spheres; the porosity is decreased

by growth of the grains beyond the point where they

overlap and form a continuous solid phase. ' ) Note that
the numerical results plotted in Fig. 2 are in excellent
agreement with the predictions of Eq. (1) for oy~oi,
but they depart significantly for al «a/. This departure
is due entirely to the different geometrical path lengths
associated with surface and bulk conductivity in porous
media.

(2) Dynamic permeability Supp. —ose that a rigid

porous solid is saturated with a Newtonian fluid of
viscosity ri and density p and subjected to a small-

amplitude oscillatory pressure gradient at frequency ra.

The rate at which fluid flows through a unit area of the

sample is Q
—[k (e)/q]VP, where k (ra) is the dynam-

ic permeability. As the frequency increases to the point
where the viscous skin depth, b (2ri/ptu)'~, becomes
small compared to the pore dimensions, the microscopic
fluid-flow pattern crosses over to potential flow except
within a boundary layer of thickness b at the pore walls

and it has been shown that"
0

lim k(ro) " 1—
)~ oo FpN pQ)

i/2
2

A

%e emphasize that this result, which follows from a
solution to the Navier-Stokes equation, involves parame-
ters (F and A) which derive from a solution to Maxwell's
equations. For porous media saturated with superfluid
He, Eq. (5) leads to a prediction for the temperature

and frequency dependence of the attenuation and disper-
sion of first and second sound. In particular, values of A
Ir in the notation of Ref. 4 and (8/b)(ka/P)'~ in that of
Ref. 5] have been measured and are in good agreement
with the calculated values (Table I). If one considers
the acoustic properties of porous media more generally
by relaxing the assumption of a rigid frame, the notion
of dynamic permeability can be incorporated into the
Biot theory. ' The high-frequency attenuation of all
three modes, fast compressional, slow-compressional, and
shear, are proportional to b/A, where b is the viscous
skin depth of the pore fluid, and we have another class of
experiments for which A is transferable.

(3) Healing length ef-fects in fourth sound Con.—sider
He II confined to a superleak whose pores are so small
that not only is the normal fluid clamped by its viscosity,
but the healing length, (H (the distance from the inter-
face over which the superfluid density departs from its
bulk value), may be comparable to the pore sizes. '3 As-
suming the validity of two-fluid hydrodynamics, let us
write for the variation of the superfluid density near the
walls p, (r) p( )(I —g(s)], where p( ) is the bulk super-
fluid density and gH= f g(s)ds. This hydrodynamic
problem maps directly onto the canonical electrical prob-
lem and, to first order in f~/A, the speed of fourth sound
1s
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FIG. 2. Calculated conductivity, a,g, as a function of pore
fluid conductivity, oy for the grain consolidation model. The
grain surface has been coated vrith a layer of conductivity aI
and thickness h 0.015a (where a is the cube edge). The dots

are the results of numerical calculations and the solid curves

are based on Eqs. (1) and (3).

40 Ps 2 (1+ g)

where c~ is the speed of first sound (assumed constant in

the healing-length region) and g is a parameter whose
value is less than 0.01 for all temperatures at saturated
vapor pressure. This result is equivalent to the equation
used by Tam and Ahlers to interpret their fourth-sound
data in packed-powder superleaks using (Ir calculated
from a theory using neutron-scattering and thermo-
dynamic data. Values of A (2a/ft in their notation) for
two superleaks are given in Table I and compared
against the theoretical values. %bile the geometry of
packed-powder superleaks does not correspond to a ran-
dom distribution of particles because of clustering ef-
fects, the calculated values are nevertheless close to those
measured.

%e now wish to speculate on a relationship between A
and the dc permeability ko k(ro 0). In a system of
winding, nonintersecting tubes of radius R we have
ko R /8F (Ref. 6). However, in a real porous medium

2566



VoLUME 57, NUMBER 20 PHYSICAL REVIEW LETTERS 17 NovEMBER 1986

the appropriate value of R is not obvious. i4 Historically,
there have been attempts to correlate ko ~ith the total
pore-surface area which have met with limited success
largely because the total surface area includes parts of
the pore space in which little flow occurs. s One may ex-
pect A to be more closely related to ko because it is a
measure of dynarrucaliy connected porosity. Returning
to the intersecting-tube model (for which A R, exact-
ly), we are led to the conjecture M -=SFko/A = 1 for a
variety of porous media. The limited amount of experi-
mental data available shows that M takes on values in

the range 1.4 to 2.5 (Table I). While there is no
rigorous reason why M should be constant, numerical
simulations on the shrinking-tubes model indicate that,
over a range of porosity in which ko varies by eight de-
cades, the variation in M is within a factor of 2. (See
Fig. 1.) We note also that for this model, the Kozeny-
Carman relationship, ko-+ '(&t /S), fails utterly.

Finally, suppose that the pore-grain interface is a frac-
tal. 's To be specific, consider the healing-length effect;
since A ' is an effective surface area (normalized to a
Euclidean volume), it scales with the size of the yard-
stick, gtt, viz. , A '~)st " where dh is noninteger. The
generalization of Eq. (6) is then open to experimental in-
vestigation with use of the known temperature depen-
dence of &H(T).

We are grateful for several stimulating discussions
with A. Libchaber, B. I. Halperin, and especially
J. Banavar, who pointed out a serious inconsistency in an
earlier version of the theory.
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