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Self-Diffusion in a Nonuniform Model System
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%e prove that the motion of a tagged particle in a one-dimensional fluid of hard point particles in an
external potential U may be asymptotically described by a diffusion process. The process is spatially
homogeneous or inhomogeneous according to whether U varies on a microscopic or macroscopic scale.
The latter process can still be described by a simple Langevin equation, provided that one interprets it in

the sense of Stratonovich.

PACS numbers: 05.60.+w, 66.30.0n

The motion of a tagged particle (TP) in an equilibri-
um fluid is one of the most studied problems in statistical
mechanics. ' s It is a paradigm for the extraction of sto-
chastic simplicity from deterministic complexity, that is,
for finding a simple stochastic description for a small
subsystem of a large (formally infinite) system undergo-
ing a deterministic evolution. The latter is for a classical
fluid given by the Hamiltonian equations of motion while
the former is known only approximately in the absence
of some coarse graining. We can achieve simplicity by
examination of the trajectories of the TP on a space and
time scale which is very large (macroscopic) compared
with the time scale on which the (microscopic) velocity
of the TP changes. This is generally expected to yield a
universal diffusive process in which the precise nature of
the fluid interactions enter only through the diffusion
constant.

An actual derivation of this expected result exists,
despite the efforts of many, only for the simplest model
systems. Chief among them is the fluid of hard rods or
point particles on a line in which the TP is identical with
(has the same mass as) the other particles. ' 3 In all
these studies the fluid was taken to be spatially uniform
so that the resulting diffusion process was independent of
the position of the TP.

In the present work we consider for the first time the
case where the fluid is not spatially uniform. We show
that the resulting motion of the TP still converges
asymptotically to a diffusion process. This diffusion pro-
cess can be either homogeneous or inhomogeneous de-
pending on whether the external potential varies on a
"microscopic" or a "macroscopic" scale. In the former
case the effect of the external potential is merely to
change (reduce) the diffusion constant in a simple ex-
plicitly calculable way (an exact form of the Arrhenius
law). In the latter case the asymptotic motion is
described by a spatially varying diffusion coefficient and

drift.
As is well known, diffusion processes can be described

by Langevin-type equations [stochastic differential equa-
tions (SDE's)j. When the "noise" is multiplicative, as
happens in the case when the diffusion coefficient de-
pends on the position of the tagged particle, the SDE can
be written in various equivalent mathematical forms.
The two best known are the Ito and Stratonovich forms,
which can be given simple physical interpretations.
These can play an important role when one has to
"derive heuristically" a diffusive behavior for a physical
process.

We find interestingly that in our case, where we derive
the diffusion equation rigorously, the Stratonovich form
is definitely simpler —it involves no drift terms —and
more natural. This gives weight to a general belief that
heuristic approximations are better done in the more
symmetric Stratonovich form than in the mathematically
simpler Ito form. We emphasize, however, that any pro-
cess which can be described by one of these forms can
always also be described by the other form. So all we
are talking here about is which form is more natural for
a given physical process.

We describe our results and give an outline of the
proof below. The complete proof (which turns out to be
fairly simple) will be presented elsewhere.

%e consider an infinite system of identical point parti-
cles on the line moving in an external potential U. The
only interactions between the particles are elastic col-
lisions, i.e., in a collision velocities are exchanged. These
prevent particles from crossing, without affecting the
infinite-system motion if labeling is ignored. The parti-
cles are distributed according to the stationary grand
canonical ensemble, i.e., their positions and velocities are
Poisson with "density" (p/2tt)'t poexpf —plU+ 2 v l}.
(p is the inverse temperature. ) As in Ref. 3, we study
the position y(t) of a tagged particle for large times, i.e.,
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we consider the scaled process

y&(t) -A 't'y(At), t «0
in the limit A ~. y~(t) should be regarded as
describing the motion on macroscopic length and time
scales.

The potential U we wish to consider is of the form
U(x/X) where the scale parameter A, may depend upon

A. Hence the density is of the form p(x/A, ).
The macroscopic motion of a tagged particle is deter-

mined by the macroscopic density

p(x) -weak limit of p(MAx/X)

as A ao, which defines naturally the macroscopic po-
tential U(x) by

p(x) -poe

and the macroscopic force

F(x)-—dU(x)/dx.

In fact we show that provided p exists the macroscopic
process y~(t), t «0, converges weakly as A ~ to a
diffusion process Z(t), t «0, whose probability density

p(z, t) is governed by

Bp(z, t)/Bt

,' (a/az) [——/jD(z)F(z)p+D(z)(a/az)pl, (I)
where

D(z) -poexp[ —PU, „)& ~
v

~ &p '(z),

U -sup[U(x)j and &
~

v (&-(2/Px)'~'.

We discuss the result now for two special choices of
the scale X,.

If X MA, then U varies on the macroscopic scale, i.e.,
U(x) U(x) and p(x) p(x). Then (1) is a bona fide
Smoluchowski equation with spatially varying diffusion
term. Note that the mobility PD(x) satisfies the Ein-
stein relation as it must for the equilibrium distribution
to be a stationary solution of (1).

As a second choice we set X, 1, i.e., we consider a po-
tential which varies on the microscopic scale. Then the
macroscopic density is constant

t I.
p- lim L ' p(x) dx, (2)

+ ~0

provided both limits agree. In this case (1) reduces to

Bp(z, t)/8t - ,'D8z//dzzp. —

In particular we have (2) and hence (3) for periodic or
quasiperiodic and, more generally, for ergodic random
potentials. Here the result holds (with the same value of
D) for almost every realization of the potential.

Note that the diffusion constant D may be written as

(&
~ ) &/p)( ~ -/& t'U&),

-e for Pe»1.
Also, in the limit b 0 (p pn) the formula for D be-
comes (& ( v ( &/po)e

If the macroscopic density on the left p (L ~)
and on the right p+ (L ~) exist but do not agree,
then

p, x&0
p(x) -'

,p, x &0

is discontinuous. In this case the macroscopic process
should be regarded as having a 8 function at the origin
as drift term.

Equivalently to (1) we may describe the macroscopic
process Z by a stochastic differential equation. 6'0

In case A, MA and the process has a spatially varying
diffusion term, the form of the Ito equation will differ
from that of the Stratonovich equation. The Stratono-
vich equation is very simple and natural, namely

dZ(t) -p '(Z(t))odW'(t), (4)

with W(t) a Wiener process with diffusion constant

poe & ( v ( &. As a matter of fact, our proof directly
yields (4), not the more familiar (1).

The Ito equation corresponding to (1) contains the
"spurious drift" and reads

dZ(t) -—,' /jF (Z (t) )D (Z—(t))dt

+p '(Z(t))d~(t). (5)

As in Ref. 3, we study the motion of the tagged parti-
cle by the relation of its position at time t to the signed
number n(t) of crossings of the origin by particles before
time t: n(t) is the number of particles crossing the ori-
gin from left to right minus the number of particles
crossing from right to left, which, of course, is the same
as for the "free" motion, i.e., the motion without
collisions.

To describe the essence of our approach consider first
the much studied case U—=O.' Then without collisions

&e ~&= lim e s dx
t I.

I.— 2I. " —L

It behaves for PU~~&& 1 as in the Arrhenius law; e.g., if
U(x) -g„y(x—n), where

y(x)-e, Ix( «b/2, b&1,

y(x)-0, ixi &b/2, b&I,

we have that

p-pa[1-b(1-e t")],
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particles move in straight lines. As tagged particle ere

choose for simplicity the first particle to the left of the
origin at t 0. Following the path y(t), t «0, of this
particle one finds easily that (i) y(t) x„'«1=the posi-
tion of the n(t)-th particle to the right of the origin at
time t. Next observe that (ii) n(t), t «0, is a simple
random walk with "~1" jumps and jump rate p& ) U ) &,

where p is the density of the ideal gas and & ) U ) & the first
absolute moment of the velocity distribution of the parti-
cles. This follows from the fact that in the free motion
(a) particles cannot cross the origin more than once, and
(b) in the ideal-gas Gibbs state, which is stationary,
"distinct particles are independent. " Therefore n(t),
t «0, obeys the classical (functionao central limit
theorem (Donsker's invariance principle)" with variance
p& ) U ) &t: The process n(At)l/MA, t «0, converges in dis-
tribution as A ~ to W(t), a Wiener process with dif-
fusion constant D„p& ) U ) &. Finally, for the ideal-gas
Gibbs state we have that {iii) x„'«~ -p 'n(t). Therefore
we obtain by (i) the invariance principle for y{t), t 0,
with variance p '&) U ) &t3: y(At)/MA, t «0, converges
in distribution to p W(t), a Wiener process with dif-
fusion constant Do & ) U ) &/p.

Now suppose the particles are moving in an external
potential U(x). Then the equilibrium density will be
spatially varying: p(x) pne t +1. Just as for the case
U 0, y(t) xt«1, where n(t), now the "crossing pro-
cess" at the maximum of U (which to simplify notation
we assume to be at the origin —our results do not require
this assumption), obeys the in variance principle:
n(At)/JA, t «0, converges in distribution to 8'(t), a
Wiener process with diffusion constant D„p &m) U ) &,

where pm;„[ p(0)] pat. . Moreover, if U(x),
x E R, is a (translate of} a sample of a translation in-

variant random bounded potential, then we have that
x„'«1-p 'n(t) and hence that y(At)/JA, t«0, con-
verges in distribution to p 'W(t), a Wiener process with
diffusion constant

(p gp)(&)U)&/p) (p gp)DO,

where
t L

p-&p& - lim L ' p(x) dx,
L,-+~ ~0

the average density.
Our result does not, in fact, require full translation in-

variance, but merely that the "average density on the
left" and on the right exist and agree, i.e., that the "mac-
roscopic density" p(x) [the (weak) limit as A ~ of
p(JAx)] be constant. If they do not agree, so that the
macroscopic density p has different values on the left
and on the right of the origin, it remains true that
x.'«) —p '(n(t))n(t) and hence that y (At)/JA, t «0,
converges in distribution to Z(t) p '(W(t) ) ff'(t).
Z(t) formally can be described by the stochastic dif-
ferential equation dZ p '(Z(t))od8' provided that
the differential is interpreted in the sense of Stratono-

vich. "
We obtain the same result even if the potential varies

on the macroscopic scale A, i.e.,

U U(x/v%) and hence p p(x/ JA ),

and we consider now again the rescaled displacement of
the test particle y~ (t) y (At)/MA. (Note that as
A the scale of the potential changes in just such a
way as to make the external force on the TP, which is
the same as that on any other fluid particle, have a finite
nonvanishing effect over the macroscopic time scale At. )
Moreover, on the macroscopic scale the density varies as
p(x) poexp[ —PU(x)], i.e., the macroscopic density
p(x) -p(x) in this ease.

Furthermore, since n(t) is the number of particles be-
tween the origin and y(t) x„'«1, we should have that
dn p(y/ JA ) dy and hence that y(At)/JA, t «0, con-
verges in distribution to a process Z(t) satisfying
dZ p '(Z)&dW. As we shall soon see, this turns out
to be correct provided the stochastic differential is inter-
preted in the sense of Stratonovich.

The reader should note that the preceding analysis is
not very convincing in the case where the potential varies
on a macroscopic scale (e.g., nothing in the argument
given for this case distinguishes between Ito and Strato-
novich integrals). The rigorous derivation of our results
is based on the simple change of variables

x p(x') dx'- f(x),&0

which converts our system to one with uniform unit den-
sity. Thus for y(t) f(y(t)) f(x„'~,1) x„'«1 we have
that y (t) -n (t) behaves like W(t) on macroscopic
length and time scales: yg(t)=A ' y(Atl, t «0, con-
verges in distribution to W(t) as A ~ oo. Undoing the
change of variables, we have that y(t) g(y(t)),
g f ', so that

yg(t) =A't2y (A—t) A 'kg {y(At ))
A ' g(A' A ' y(At))

-A -'"g(A'"y, (t))

g~ {y~(t)—)
Now in all the cases we consider, the function g~(u)
converges (uniformly on compacts) as A ~ to a func-
tion g(u), so that y~(t) converges in distribution to
g(W(t)) in that limit. Moreover, when U(x) varies on
the microscopic scale (i.e., does not depend upon A) we
have that g (u) -p '(u) u.

The preceding analysis covers the case in which the
potential U, and hence p, depends on A; in this case f, g,
y, and y also have an implicit dependence on A. When
U U(x/MA) varies on the macroscopic scale, the scal-
in involved in the definition of g~ cancels the implicit

A scaliny involved in g, so that g~ g, where g f
and f I p(x')dx'. Thus y~(t) converges in distribu-
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tion to Z(t) =g(W'(t)). Since the usual rules of cal-
culus are valid for Stratonovich integrals, we have that
dZ g'OY(t))~d8' if the Stratonovich convention is
adopted. Since g'(W) -[f'(Z)1 ' [p(Z)l ', our re-
sult follows.

We note that the fact that Z is most simply expressed
as a Stratonovich integral can be understood in terms of
symmetry properties under time reversal: Both n(t),
whose asymptotic law is 8'(t), and j p '(Z)odR' are
antisymmetric.

We conclude this section by noting the following
consequence of the way the diffusion constant D depends
upon the macroscopic density p: If U U(x) is quasi-
periodic then D exhibits sensitive dependence on the
modulation parameters. For example, if U(x) cosx
+coax(kx), then D D(k) D', independent of k, for
k irrational and is unequal to D' for k rational; in fact,
D is continuous at all irrational k and discontinuous at
rational k. These facts follow from the corresponding
facts about p p(k). Similar results were discussed in

the work of Golden, Goldstein, and Lebowitz'z for dif-
fusion in a quasiperiodic potential (Smoluchowski equa-
tion). Here the source of the discontinuity is perhaps
more concrete since it lies in the density.
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