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Quantum Nondemolition Detection of Optical Quadrature Amplitudes
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In an optical fiber, nonlinear optical interactions couple the sideband modes of two strong pump waves

at different frequencies just as required for a quantum nondemolition measurement. Experimental mea-
surements demonstrate that 37% of the rms phase fluctuations of one wave are caused by the quantum
amplitude fluctuations of the other.

PACS numbers: 03.6S.Sz, 07.60.-j, 42.50.-p
The act of measurement of a quantum mechanical

variable introduces uncertainty in subsequent measure-
ments made on the same system. If only one variable is
of interest, "quantum nondemolition" (QND) or "back-
action evading" measurement schemes can be defined in

which the uncertainty induced by the measurement feeds
back into a decoupled conjugate variable, leaving the
quantity of interest unchanged. '

We have implemented an optical quantum nondemoli-
tion detection scheme where "the variable of interest" is

the quadrature corresponding to amplitude fluctuations
of one wave and the "meter" or "readout" is the quadra-
ture corresponding to phase fluctuations of a wave of a
different frequency. The coupling between the QND
variable and the meter is due to the optical Kerr effect in

an optical fiber. ss When all relevant four-wave mixing
processes in the presence of two strong pump waves are
included, the Hamiltonian for this coupling is of exactly
the form required by simple QND measurement mod-
els. 7 Our results show a definite correlation between
the QND measurement and the subsequent optical
homodyne detection of the QND variable, but the
signal-to-noise ratio is less than unity.

t

Six modes of the electrotnagnetic field must be con-

sidered in descriptions of our QND detector. Two
modes —at the frequencies m, and co»—are strong clas-
sical pump waves with amplitudes E, and E», respective-
ly. Because of the nonlinear index of refraction, the
slowly varying complex amplitudes of these modes prop-
agate down the fiber according to

8E„/8z i (K, +2K„)E,

8E„/az -t (2K, +K, )E,,

where the coupling constants are Kt (12tttoj/nc)fX
x ~EI( for j x,y, X 5x10 ' cm /erg is the
third-order nonlinear susceptibility, and f is a mode-

overlap factor of order unity.
The other four modes are shifted above or below one

or the other pump wave by the same shift frequency b.
The quadrature operators for phase and amplitude
modulation of the two pump beams at frequency 8 are
linear combinations of the creation and destruction
operators for these four sideband modes. 9 It is con-
venient to introduce a local time variable t nz/c and to
transform into the pump interaction picture. This is

done by application of the unitary rotation operator
U exp(iRt ), where

(clrt)[(K'~+2K»)(a~+a ++a/ —a )+(2K +K»)(a»t+a»++a»t-a»-)]

and a +, a —,a»+, and a„,are annihilation —operators for the four sideband modes, with the + and —subscripts indi-
catmg the direction of frequency shift from the corresponding pump wave. For the wave E„ the (negative frequency)
phase-modulation quadrature operator X& and the amplitude-modulation quadrature operator pz are p& —iUt(a„
—a/+ )U and Xg Ut(a +at~ )U while the corresponding operators for E„are Y& iUt(a» —a»t+—)U and

Ut(a» +a»t+ )U. The overall phase shift of the E» field with respect to E is not relevant and has been set equal
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«zero. The real and imaginary parts of X& and Y~ comprise four independent (commuting) QND observables; simi-

larly the real and imaginary parts of X& and Y& are four independent QND readouts.
The Hamiltonian for the nonlinear interactions of the sideband modes in an optical fiber is proportional to the time-

averaged fourth power of the magnitude of the total electric field operator. ' When written in the pump interaction
picture, the sideband Hamiltonian takes the simple form

e'-UteU —S~

(&c/n) [K X~tx~+Kr Y3YA+2y(K»Ky) [XJY~+X~Y3]+[I (Xg I & I
+ Yg IEy I )+H.c l].

The operator I describes phase noise produced by light-scattering processes in the fiber, " and y is a polarization corre-
lation factor. Fiber attenuation has been neglected. A key assumption in the derivation of Eq. (4) is that the frequency
shifts ro, —ni„and b are such that all four-wave mixing processes involving the six indicated waves are phase matched
but none that involve any additional waves are. In particular, new pump waves at 2ro„—ni„and 2m„—ro, cannot be
generated because of a large wave-vector mismatch. Such is the case whenever (r0 —co„)b & 10 6Hz & (ro, —co~) .

The interaction term in this Hamiltonian is linear in each of the quadrature operators X~ and Y~ and is of the form
required for a quantuin nondemolition measurement which is also hack-action evading. The propagation equations for
the quadrature amplitudes are

de/dz d Yg/dz 0,

dXPdz 2K X +4y(K K„)'I Yg+I [E„[, dYfjdz 2K„Y +4y(K„K )'i Xg+r[E

The quadratures at the output of the fiber are given by

X„(z)-X,(O), Y, (z)-Y, (O),

X,(z) -X,(O)+2r.X„(O)+4y(r,r„)'"Y„(O)+Iz (E.(,
Y&(z) Y&(0)+2rr Y~(0)+4y(r»rr)' X~(0)+I z )Er ),

(4)

(5a,b)

(5c)

(5d)

where rj Kjz is the squeeze parameter.
When neither r, nor r„ is zero, the output phase quadratures Y&(z) and X&(z) contain information about the input

amplitude quadratures Xg(0) and Y~(0), respectively. These phase quadratures constitute meters in the QND sense.
Measurement of one of these quantities allows inference of the amplitude quadrature to which it is coupled without per-
turbation of that amplitude quadrature. Hence, the measurement is back-action evading. In our experiment, the side-
band fields at the fiber input are vacuum states.

Optical and rf heterodyne techniques allow measurement of the Hermitian real and imaginary parts of each of the
quadratures. A local oscillator derived from one of the output pump waves and phase shifted by 8 can beat with the
sideband quadratures at the photodetector. The (negative frequency) operator for the b Fourier component of the x
photodetector current is

l„(8)c»ii» ( 8» ) f[c 8oXsg( )z+ l s8nXp( )z]+(r/ '»—I)'i Xo]y

where ri is the detector quantum efficiency, Xo is the quadrature operator for the vacuum state at phase angle 8, and a
similar expression holds for the y modes. By this means, the X& quadrature amplitude can be detected and the Y~(0)
input inferred with signal-to-noise ratio limited by the other terms in Eq. (5c). Thus, i, is a QND meter for Y~. It is,
however, necessary to prove that this meter reads correctly by correlating it with Y~.

In the present experiment, currents corresponding to the x and y photodetectors are amplified with gains g and g~,
the ir signal is delayed by z, and the two signals are combined: ii,i(b) g,i, (8)+exp[ibz]gri„(0) The delay o.f the b
Fourier component results in a phase shift Bz The local osc.illator for the x detector is phase shifted by 8 while that for
the y detector is not shifted, i.e., Y~ is homodyne detected. The electrical noise power observed by an rf spectrum
analyzer is proportional to —,(i„i(b)i~i(b)+iiai(h)ii„(b)l, which includes a term proportional to the desired correla-
tion. The ratio of this noise po~er to that for a coherent state at the x detector ~ith the same dc current is

V 1+Z +ri»[2r»sin28+(2r»+pr»)(1 —cos28)]+8q»y r rz(1 —cos28)+8Z 'y[ri»ri„r r„]'i sin8cos(bz) (7).
The parameter Z [g riJz

(
8~0

~ /g„rishi ) 4„0[ ] accounts for differences in the gain between the two detectors.
Each of the five terms on the right-hand side of Eq. (7) has a unique interpretation. The first two represent the noise

of the standard quantum limit on the x and y detectors, respectively. The third term results from the squeezing and ex-
cess phase noise due to the interactions of X~ and X& with each other and with the excitations responsible for the light
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FIG. 1. The experimental apparatus. Strong pump waves af
two different colors are combined by a prism, propagated
through 114 m of single-mode optical fiber, and separated by a
second prism. The Y wave is then incident on photodiode DY,
which measures its amplitude-fluctuation noise, while the X
wave encounters a phase-shifting interferometer. The DX pho-
todiode produces current i (8) which is sensitive to the phase
quadrature fluctuation. The dc currents from both diodes are
measured by digital voltmeters (DVM) and the ac noise
currents are delayed and combined. The spectrum analyzer
displays the electronic noise po~er in the combined signal.

scattering, parametrized by the scattering strength p."
The fourth term is an excess phase noise for the x waves
produced by the coupling to the quantum amplitude fluc-
tuations of the y modes. This term is the mean square of
the QND signal which measures the quadrature ampli-
tude Y~. The last term results from the nonclassical
correlations between this QND signal and the photo-
current from the y detector which detects Y~ directly.
Each of these quantities can be accessed experimentally
and the results compared to Eq. (7).

The apparatus for the basic experiment appears in Fig.
l. A frequency-stabilized krypton-ion laser is made to
operate on the two independent quantum-noise-limited
transitions at 647 and 676 nm. The two wavelengths are
separated by a prism to facilitate manipulation, recom-
bined with another prism and coupled into a single-mode
optical fiber. Not shown in the figure are cryogenic ap-
paratus necessary to cool the fiber to 2 K to suppress
phase noise and a phase modulator required to avoid
stimulated Brillouin oscillation at low temperatures. "
After the fiber, the two wavelengths are again split by
another prism. The 647-nm beam is incident directly on
an EG&,G model FND-100 photodiode. The current
fluctuations on this signal diode sense the amplitude
quadrature Y~. The 676-nm beam is reflected from a
confocal interferometer adjusted to shift the phase of
the carrier wave by 8= —x/3. The reflected beam is in-
cident on a second, meter photodiode which produces
current i, (8). The electrical signal currents from the
two diodes are amplified, and one is delayed by a length
of coaxial cable (delay time r) The two .signals are then
combined on a hybrid junction which puts out the arith-
metic sum of the currents into the spectrum analyzer.
The average detector currents are recorded by use of di-
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FIG. 2. The electronic noise power as a function of frequen-
cy 8'. All traces are normalized to the standard quantum limit
at the photodetector DX. The solid circles show the noise
power for the experiment sho~n in Fig. 1 awhile the solid line in
trace (a) is a fit by Eq. (8). The open circles and trace (b)
show the experimental and predicted uncorrelated noise levels
when the Y wave is incident directly on photodetector DY and
not propagated through the fiber. The X wave continues to
propagate through the fiber and is incident on detector DX
with the same phase shift and power as in trace (a). The noise
levels (c) and (d) were taken with no light on detector DY, but
with and without the Y wave in the fiber, respectively. The
difference between the two levels is the mean square of the
QND signal. Again, the solid lines are predictions of Eq. (8).
All the experimental points have an estimated 2% uncertainty,
roughly equal to the radius of the solid circles.
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gital voltmeters to calibrate the local oscillator intensi-
ties.

In the basic experiment, signal and meter powers of
130 and 60 mW were coupled into the fiber and detected
on the two photodiodes. The noise spectrum near the
56-MHz phase-noise minimum" appears as the solid cir-
cles of trace (a) in Fig. 2. The sinusoidal frequency de-
pendence due to the correlations between Y~ and X& is
readily apparent. Trace (b) shows a calibration trace
taken by directing signal power equal to that in the
former measurement into the y detector without propa-
gating it through the fiber while maintaining exactly the
same meter conditions. The constant level indicates the
absence of correlations between the quantum-noise- lim-
ited signal detector current and the meter. The fact that
the sinusoid of trace (a) falls below the uncorrelated
noise level of trace (b) indicates that the fluctuations in

X&(z) are correlated with the quantum fluctuations in

Y~ (0) through the nonlinear interaction in the fiber.
Other traces in Fig. 2 show the noise levels under oth-

er conditions. When only the meter beam is present in
the fiber [trace (d)l, the noise at the probe detector is
above the quantum limit because of fiber-produced phase
noise. When the Y wave also propagates through the
fiber but is blocked from the y detector [trace (c)], the
probe detector noise level rises further. This extra noise
results from the nonlinear interaction between Y~ and X&
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and is given by the fourth term in Eq. (7).
The solid curve labeled as trace (a) in Fig. 2 is a fit of

Eq. (7) to the experimental noise-power levels shown as
solid circles. The parameters q„0.4, q~ 0.64, and

8 —tr/3 were measured in a subsidiary experiment.
The squeeze parameters r„0.15 and r„0.4 as well as
the phase noise ratio p 0.8 could be estimated from
data taken on this optical fiber previously. " The quan-
tum noise on the y amplitude is Z and is determined
experimentally as the difference between traces (b) and
(d). The remaining free parameter y 0.6 was adjusted
to give the best fit. The predictions of this fit for the
various other noise levels shown in Fig. 2 appear as solid
lines.

In other experiments, the 8 dependence of the noise
levels and correlations predicted by Eq. (7) was verified.
The coefficient of cos(br) does vary as sin8 as predicted,
and the gain and local-oscillator amplitude dependence
parametrized by Z also was as in Eq. (7). The am-
plitude-noise level of the y beam upon exiting from the
fiber was within 2% of the standard quantum limit, veri-

fying that the measurement is in fact back-action evad-

ing at least to the level of not adding fluctuations greater
than the vacuum.

For the data shown in Fig. 2 approximately 37%, rms,
of the measured fluctuations [trace (c)) of the detected
X quadrature result from quantum fluctuations of Y~.
The remainder of the fluctuations [trace (d)] are due to
quantum fluctuations and fiber-produced phase noise of
the meter, corresponding to the first and third terms of
Eq. (7). A QND measurement scheme seeks to detect
the influence of a weak external force by making succes-
sive measurements of the signal. Our data predict a
correlation coefficient of (0.37)2 for two successive QND
measurements, whereas perfect QND detection would

yield 1. The corresponding noise level for a hypothetical

external force is —3 times the standard quantum limit.
A QND detector with such a low signal-to-noise level

may not have great practical utility, but the principle of
QND detection has been verified.
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