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Theory and Model for Martensitic Transformations
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Martensitic transformations are sho~n to be driven by the interplay between two fluctuating strain
components. No soft mode is needed, but a central peak occurs representing the dynamics of strain clus-
ters. A two-dimensional magnetic-analog model with the martensitic-transition symmetry is constructed
and analyzed by computer simulation and by a theory which accounts for correlation effects. Dramatic
precursor effects at the first-order transition are demonstrated. The model is also of relevance for sur-
face reconstruction transitions.
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Most metals that are closed packed at low temperature
undergo at higher temperature a structural transition to a
bcc structure. ' This is called a martensitic transforma-
tion. In spite of its universality there does not exist a
theory which in a satisfactory way explains this transi-
tion. %e shall here argue that it is strain fluctuations
caused by the anharmonicity which drives the transition
and that therefore linear or harmonic theories will fail.
The problem is mapped onto a two-dimensional magnetic
lattice model and we investigate this by correlation
theory2 and Monte Carlo computer simulation. The lat-
tice model allows an extensive simulation study of large
systems, much larger than is possible with molecular
dynamics on systems with translational degrees of free-
dom. This is of decisive importance for an investigation
of fluctuation effects and the correlation length of short-
range order. The model by itself has a wide range of pos-
sible applications ranging from physisorbed overlayers,
surface reconstructions, and structural polytypism to
martensitic transformations, of which only the latter will

be considered here.
The early theory by Zener suggested that a softening

of a shear mode in the bcc phase causes the martensitic
transition. However, except for Li and Na the shear con-
stant c =(cti —ct2)/2 is not very small and no evidence
for a softening has in general been observed. 5 This led
Friedel to suggest that, since the transition occurs at
temperatures higher than the Debye temperature, the ex-
cess entropy for the bcc phase is due to an overall lo~er
photon spectrum, expected to scale with the number of
neighbors, eight for bcc and twelve for hcp. A direct
quasiharmonic calculation of the vibrational free energy
for the bcc and hcp phases for Zr, with use of the recent-
ly measured phonon dispersion curves in both phases, is
now possible. It was recently pointed out by Watson and
Weinert that the electronic entropy difference is of the
order of 0.2kB and not negligible. For Zr the calculated
quasiharmonic vibrational plus the electronic free energy
is found to be identical for the bcc and the hcp phases
within the error limits set by the accuracy of a fit to the

measured phonons, close to the martensitic transforma-
tion at Tsr =1135 K. The conclusion is that the effects
considered previously are important in making the transi-
tion possible, but do not cause it as such and do not give
an understanding of the transition mechanism. Neither
is a soft mode observed as required for the Zener single-
strain theory. A similar situation exists for Na and Tl. '

Let us now in Fig. 1 consider a physical picture of
the marten sitic transition following the Nishiyama-
%assermann rule, ' which transforms the planes
(110)b„(111)t„and the directions [1101b„[121]t„
for the bcc fcc transition and similarly (0001)h,~
and [1100jh,~ for the bcc hcp transition. The latter
will be discussed here. It occurs in Zr and many other
metals and alloys. ' We need in the bcc phase two strains:
a uniform strain at [0011(001)along z [001)b„reducing
the angle 8, =125.3 to Op 120' thereby making per-
fect hexagons, and the internal shear strain e2[110j(110&
along x =[1101b„shuffling atoms in every second layer
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FIG. 1. Top left: The near-hexagonal planes in the bcc
structure, but with 8, 125.3'. A e~ strain along z [001]
gives perfect hexagons with Hq 120 . By shuffling atoms in

every second plane by a sq strain as indicated by arrows we ob-
tain the hcp or fcc structures. A second of the six possible
equivalent domains is shown to the right. Lower part: A pro-
jection along [001] with the atomic movements represented by
spins on a square lattice. The magnetic model with ferromag-
netic and antiferromagnetic order is represented by the Hamil-
tonian (3).
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into the hcp positions. s~ has the same elastic constant c
as the shear mode of e2 symmetry considered by Zener.
Here e2 is the internal strain corresponding to the low-

frequency transverse %-point phonon mode T~ measured
in Zr at co~ =1 THz. The stability of the bcc phase can
be evaluated by a Landau expansion of the free energy in

terms of these strains. The symmetry allo~s then the fol-

lowing terms:

F =F0+ 2 cs~z+ —,' c0Na2+ V3a~a2+ V4sz+ V4a~". (1)

The V3 term couples the uniform strain with two internal
strains. The anharmonic terms V„are not expected to
vary rapidly with temperature near T~. Fo is the
quasiharmonic vibrational and electronic free energy, as-
sumed to be the same for the bcc and hcp structures, as
found above. Minimization of F with respect to a~ gives

call this the square phase) and the internal strain sz is
represented by an antiferromagnetic structure with the
moment in either the x or the y direction in the xy plane
(we call this the triangular phase). The real bcc hcp
transition has of course lattice dimension d =3 and six
hcp domains, two for each equivalent [110]b„direction.
The magnetic model that we consider has the same sym-

metry, but with d =2 and an n =2 component order pa-
rameter in the triangular phase corresponding to four an-
tiferromagnetic domains. The two-dimensional nature
enhances the fluctuation effects we are to discuss. The
model is obviously of direct relevance for the surface
reconstruction problem as found, e.g., on the W(001) sur-
face. ' The following magnetic Hamiltonian stabilizes
the ferromagnetic and antiferromagnetic order according
to the relative strength of the Ising interaction K and the
two-dimensional, pseudodipolar interaction J:

F Fo+ ,' roNa—)+ [V4 —V3/c]a2+ Vss2s. (2)

A small c may then cause the effective fourth-order term
V4gff to be negative and consequently give rise to a first-
order martensitic transition, as observed. We emphasize
that neither c0N nor c need vanish as required by the
Zener theory, but the transition is a consequence of the
interplay between two strains. " Only a small softening
of co~ is required, and it is important to note that this
does not necessarily imply that the observed N-point pho-
non mode softens significantly, as discussed below.

In an earlier study'2 of the Bain bcc fcc transition an
analysis was made which also led to the identification of
strains of the s~ and a2 symmetry as the most important
strain components. However, since only the uniform
strain of s2 symmetry and only second-order coupling
terms in the energy expansion were considered, the im-
portance of the internal a2 strain was not recognized and
a low-energy path along a~ was suggested. The result of
the couplings in (1) suggests that the lowest free-energy
path between the bcc and hcp structures occurs in the
s&,az space along a valley with minima and saddle point
along the parabolic path a~ (V3/c)a2. The free energy
along this path is given by (2). Possible third-order
terms'3 V3ej3 and higher-order coupling terms in (1) may
modify this path slightly, as may also coupling to the
volume strain, which was shown' to renormalize c.

To substantiate the simple two-strain theory we study
a specific microscopic interaction model by computer
simulation and correlation theory. In both cases it is
most convenient to represent the atomic motion by a spin
located at the average position. The model thus excludes
atomic diffusion, which as a characteristic fact is found
not to play a role at the martensitic transformation, '

which is dominated by large shears as emphasized in the
model. To simplify further let us consider only a projec-
tion on the (001)b plane, which is shown as a two-
dimensional square lattice in the lo~er part of Fig. 1.
The uniform sI strain is represented by a ferromagnetic
order in the z direction perpendicular to the plane (we

H =g,"[—KS;,S,+J[S; S —P(r;,"S;)(r;,"S,)]]

+H„(3)
with P =2. An anisotropy term H, - —Dg,.(S;„+S;~)
with D & 0 breaks the continuous xy degeneracy and sta-
bilizes the x or the y direction. This is convenient for the
computer simulations of (3) with classical spins. For
S 1 the term reduces exactly to H, DQ, S;, (favorin. g
just the xy plane) and (3) becomes a singlet-doublet
model which has previously been intensively studied. ' 's
In both cases the transition is from n =1 to n 2, which
at the paramagnetic phase boundary gives rise to a bicrit-
ical point. The martensitic transformation corresponds to
a crossing of the first-order line at T~.

The phase diagram calculated by computer simulation
for classical spins is shown in Fig. 2(a) for D 2J. The
simulations are carried out by use of Monte Carlo
importance-sampling techniques, and standard methods
have been employed to estimate finite-size effects and the
order of the phase transitions. ' The lattice sizes studied
range from 202 to 100 spins and the statistical ensembles
incorporate from 10 to 10 microconfigurations. At T~
there is a finite ferromagnetic magnetization M, in the
square phase. Using the correlation theory we calculate
the free energy and consider the influence of a small in-
crement m, and a small antiferromagnetic order parame-
ter m„.The free energy assumes exactly the form (1):

F =F,=(2Z„") 'm,'+ (u,"") 'm-„'+V.m„'-
+ V3m, m„'+.. . , (4)

from which (2) follows, giving a first-order transition if
V4 V4 g V3 Q 0 V3 is finite for finite M„but van-
ishes in the paramagnetic phase. V3 and V4 vary slowly
with temperature and are reasonably accurately given
simply by mean-field theory. X„"is the uniform and X,""
the staggered susceptibility for finite M, . For these sus-
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F16. 2. (a) Phase diagram and (b) correlation length g (in
units of a/n, a 1) determined by computer simulatian for the
magnetic model (3) of a first-order martensitic transformation
at T~ (E/J 1.8). g is calculated by fitting of the first and
second q moments to those of a cutoff Lorentzian structure fac-
tor. Strong precursor phenomena at the first-order transition
are found, caused by correlation effects.

ceptibilities it is important to include correlation effects,
which give rise to a rapid temperature variation. In the
correlation theory2' these are calculated by a mode-

mode-coupling approximation. For wave-vector-
dependent fluctuations m, (q) and m, (q) we find the in-

verse susceptibility components I/Z„"(q) R, ECyz-
—x, +q2 and 1/X, "(q) R„—Jyz —x„+q with yz 2

x(cosq„+~cosq~ ~
) where q is measured from the fer-

romagnetic or antiferromagnetic zone center for z and x,
respectively. If we include only the most dominant fluc-
tautions we find the local inverse susceptibility
R, C2/C~, where C„J"gyv(m, (q)m„(—q)). C~ is

proportional to the nearest-neighbor correlation function.
C2 involves both the self-correlation, which varies slowly
with temperature, and the next-nearest-neighbor correla-
tion. At high temperature when (m„(q)m„(—q ))
-kaTX,""(q),we find further that R -R, . An increas-
ing antiferromagnetic short-range order (i.e. , increasing
C~ or correlation length g =I/x ) is therefore self-
reinforcing by making coefficients to both m„and m„,
1/X,"" and V4r, smaller and therefore the fluctuations
larger. %e thus predict a precursory increase of antifer-
romagnetic short-range order. Precisely analogous argu-
ments can be presented by consieration of the transition
from the triangular phase.

By the computer simulation we have calculated the

correlation lengths (, and g, for short-range order in the
quadratic and triangular phases, respectively. Figure
2(b) shows a dramatic increase in the correlation lengths
upon approach to the first-order transition at T~ from
both sides in agreement with the above analysis. The ef-
fect is of course particularly large for the considered
two-dimensional case, but expected qualitatively also in

three dimensions. We have used P =2 in (3) which gives
isotropic triangular short-range order in the plane. A
value PW2 will give more realistic streaklike fluctuations
expected for the martensitic transformation. '

Finally a remark about soft-mode frequencies. An ex-
act sum rule gives for the first-moment frequency
(m, ) -~, [g," (q)ZP{q)i'/2. If the spectrum is assumed
to be quasiharmonic, i.e., a &function response at
co& =(coq), we must in conjunction with the increased
short-range order observe a softening of coq. However,
this is not the case in the presence of significant damping.
For the 5=1 singlet-doublet model and the antifer-
romagnet, ' it was sho~n that in the presence of two
dynamical variables the spectrum develops a central peak
at co 0, in addition to a broadening peak at coP'" near
coq when (co~) decreases. Now, coP'" does not vanish,
but loses intensity to the central peak, which increases
proportionally to Z,"". The same situation is expected for
the real bcc hcp martensitic transformation and co~ in

(1) must be identified with (cov), and not coP'". Since
T~&&80+by there are strong interactions between the
phonons, and the quasiharmonic description of the pho-
nons is unsatisfactory. In analogy with the magnetic case
we thus predict that when the precursory short-range or-
der begins to develop, a finite-width central peak emerges
in the phonon spectrum. Such an effect has previously
been discussed for other structural phase transitions. '

The physical interpretation of this is the temporal evolu-
tion of clusters of the hcp phase in the bcc phase and vice
versa. The width is expected to be overestimated in the
simple pair mode-mode-coupling theory. 2' In Zr there
was in fact observed6 a relatively high-intensity quasi-
elastic scattering. It was cautiously attributed to other
effects b and a further study of the temperature depen-
dence would be valuable to clarify its role for the transi-
tion. An intensity loss without softening of the phonon
spectrum was reported for Na. There is considerable
evidence from electron microscopy and x-ray diffraction'
that fluctuating s2j110l(110) shears are characteristic of
the initial step in the formation of martensite in most sys-
tems. This is in accordance with the present theory and
model. Usually the premartensitic fluctuations are ob-
served, also by neutron scattering, ' to occur slightly in-
commensurate relative to the parent lattice. Such an ef-
fect could be accounted for in the model by our allowing
farther-neighbor interaction in (3). The computer simu-
lation presented here demonstrates the presence and
gro~ing importance of short-range order clusters near
TN. The kinetics of the cluster formation is found to be
very slow.
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Above ~e have discussed a theory and magnetic analog
of the bcc-hcp transition as it occurs for example in Zr,
Tl, Na, etc. More complicated closed-packed structures
exist with long-range ordered stacking faults. Several as-
pects of the stability of these structures in insulators can
be described by the axial next-nearest-neighbor Ising
model, although it appears to be less applicable for me-
tallic systems. ' The two-dimensional magnetic
Heisenberg-like model considered here, when extended to
include next-nearest-neighbor interactions and P/2, is
still simple, but more realistic allowing also a calculation
of the dynamic behavior. For the transition to the long-
range hexagonal structures we again need two dynamical
variables, i.e., the two strains, et, and a shuffling strain,
e2(Q), now with a shorter wave vector, 0(Q & tr. The
free energy again assumes the form (1) and the correla-
tion theory predicts a central peak indicating that fluc-
tuations are driving the transition rather than a softening
of the phonon spectrum,

In conclusion, the martensitic transformation is a
high-temperature transition in which the anharmonic
phenomena play the important role of giving rise to pre-
cursor phenomena in both static and dynamic properties.
Linear and quasiharmonic theories are inadequate for
describing this.
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