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Evolution of Two-Dimensional Soap-Film Networks
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A mean-field theory is presented for the coarsening of a two-dimensional soap-film network. This
theory explains (1) the correlation between area and number of sides of the cells, and (2) the anomalous
absence of dynamical scaling laws, which is sho~n to have its origin in the topological constraint of a
space-filling network.

PACS numbers: 82.70.Rr, 68.90.+g

Coarsening of soap froths is an interesting and familiar
process in which soap cells lower their surface free energy
by increasing their average size. Traditionally, metallur-
gists have studied this process as a model for grain
growth in polycrystalline solids. ' Recently, cellular
soap-film networks have appeared in the literature on
condensed matter as prototypical systems with topologi-
cal disorder. 2 It is„in fact, the topological aspect that
distinguishes this process from what is known as Ostwald
ripening, which is the coarsening of precipitated grains in

a solution. Whereas there one has well-separated, ap-
proximately spherical grains, here the cell shapes are con-
strained by the network topology: Spherical cells cannot
fill space. For Ostwald ripening, a very successful
mean-field theory was developed around 1960 by
Lifshitz, Slyosov, and Wagner3 (LSW). To my
knowledge, there is no comparable theory that incorpo-
rates the topological constraints of a network. It is the
purpose of this paper to present such a mean-field theory
for the coarsening of a two-dimensional soap-film net-
work. Experiments have indicated that this system
does not follow the LS% scaling laws, and one aim of the
theory is to explain this anomalous behavior. A second
aim is to explain the relation between shape and size of
cells in the network.

The structure of a soap froth between two closely
spaced parallel plates can be described by a two-
dimensional network with threefold coordination of the
vertices (see Fig. 1). Pressure differences of the gas in

adjacent cells drive the gas through the cell ~alls. The
time scale of this diffusion process is observed to be much
larger than the time scale on which the soap film adjusts
its shape to variations in pressure, so that one may as-
sume that the soap-film network is continuously in equi-
librium with the gas in each cell. This implies, in partic-
ular, that ce11 walls are circular arcs meeting at angles of
120'. The pressure difference Ap is given by Laplace's
law, Ap =cr/R, where a is the surface tension coefficient
and R the radius of curvature of the common boundary.
It is assumed that the gas is incompressible and that its
flux through the soap film equa1s php, where p is a per-
meability coefficient. For the growth rate of the area A

of an n-sided cell, one then easily derives von Neumann's
law, "

dA/dt k (n —6),

with k (tr/3)op. The total area of the system remains
constant in time, as it should, by virtue of Euler's
theorem that the cells have six sides on average. The
description of the network dynamics consists of two prob-
lems, which can be dealt with separately as a result of the
separation of time scales mentioned above: (1) What is
the relation between the area and number of sides of the
cells; and (2) how does the distribution of areas evolve in
time? I first turn to problem (1).

It is observed experimentally that large cells tend to
have many sides. I attribute this correlation to the rela-
tively low surface energy of a many-sided cell. 'o Consid-
er an n-sided cell bounded by a regular polygon con-
structed by circular arcs meeting at 120' angles. For a
given length 5 of the cell perimeter, its area 2 is given by

FIG. 1. Two-dimensional soap-film network, traced from an
experimental photograph made by Smith (Ref. 5). The froth
lies between parallel glass plates, spaced about 4 mm apart.
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A -5'P(n ), with

p(n) = (4n ) '(tr/6 —n/n ) sin (n/6 —/t/n ) [cot(tt/n )+cot(n/6 —x/n )1 —(4n) '(x/6 —z/n ) '.
The form function P(n) increases monotonically by 4% as n goes from 2 to ~. Let me now express the free energy F of
the network solely in terms of the joint distribution P(A, n) of area and number of sides. By the ignoring of higher order

distribution functions, the effects of specific correlations between the sizes and shapes of neighboring cells are neglected

in this "mean-field" theory. Consistent with this approximation I take the regular polygon as the representative cell

shape, since deviations from regularity ~ould result from local correlations which are neglected any~ay. The free ener-

gy is then given by

(3)

that P(A, n) satisfies Eq. (4). In general A, is
what smaller than, but of the order of, the average
A. The one-to-one relation between area and num-
f sides which follows from Eqs. (5) and (6) is plot-

n Fig. 2, together with numerical data for the aver-
rea A (n) of an n-sided cell obtained by Weaire and

mode, ' from simulating the equilibration of networks
0 cells. (No quantitative experimental data seem to
vailable. ) The agreement is quite satisfactory, in

of the simplicity of the theory. Note, in particular,
that both sets of data show a sublinear correlation, unlike
the linear correlation observed in botanical cellular net-
works (Lewis's law; see Ref. 2), although the numerical
data increase more rapidly for large areas than predicted
by the mean-field theory. It would be important to have
also numerical (or experimental) data for the average
number of sides of cells with a given area, in order to see
to what extent correlation effects smooth out the steps in

Fig. 2.
I now continue with problem (2), the time dependence

of the area distribution function P(A, t) Combinin. g the
result (5) with von Neumann's law (1), one obtains the
evolution equation

P(A, n) P(A)b„„(g/g&, (5)

with n, that integer ~ 2 for which the expression

[A/P(n)]t/2+3 —13/42 —1/z(5g 9~3)A 1/2n

has the smallest value. " The characteristic area A, is a
Lagrange multiplier, to be determined from the require-

F = dA g [cr[A/p(n)1' zP(A, n) +kaTP(A, n)lnP(A, n)1.
0

To obtain the equilibrium state of the network this ex-
pression is minimized, given the distribution of areas ment
P(A) g„Pz(A,n), and subject to the topological con- some
straint (Euler's theorem) area

~ oo oo ber o
dA g (n 6)—P(A,n)-0 (4) ted iaJ 0

age a
Because of the fact that the surface energy of a soap cell
is very much larger than the thermal energy kBT, it fol- of 10
lows from this minimization problem that the distribution
of the number of sides for a given area is nonvanishing
for one integer only, i.e.,

Ac

4 m

2
0

FIG. 2. Plot of the relation between cell area and number of
sides, from the minimizing of expression (6). For comparison,
markers show A (n)/A as obtained in the simulation of Ref. 12.
(The different markers correspond to three different networks;
for n ~5, squares and circles coincide. )

8P (A, t)/Bt

= —k (8/8A ) [P(A,t) [n, (A/A, (t)) —611, (7)
where the growth rate n, (A/A, ) —6 has been determined
above (see Fig. 2), and A, is such that n, (A/A, ) =6.
This equation looks very similar to the one presented in

the LSW theory of Ostwald ripening. ' The celebrated
result of that theory is that, in the long-time limit, the
(normalized) distribution function depends only on A and
t through the scaled variable A/A (t), with A (t) increas-
ing linearly with time. Surprisingly enough, no such scal-
ing law has been observed in coarsening soap-film net-
works. Instead, available experimental data show a
distribution which broadens without any indication of an
asymptotic limit. Though apparently similar to the LS%'
equation, Eq. (7) nonetheless exhibits such anomalous
behavior. This is shown in Fig. 3, obtained by a numeri-
cal integration. ' I started with a network consisting of
hexagonal cells with a small fraction of pentagon-hep-
tagon pairs. The hexagonal network is unstable against
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the formation of such "5-7 defects, " new defects are
created, and the distribution broadens. The distribution
does not then approach a scale-invariant form, but con-
tinues to broaden. Finally, a "collapse" occurs, which
consists of the rapid, almost total disappearance of few-
sided cells and which returns the system to a state with

mostly hexagons plus a few defects. The process then re-
peats itself. Shortly before the collapse only a small frac-
t1011 of llcxagollal cells Icmatns alld tllc dlstrlbllt1011 of thc
number of sides has become bimodal, with a standard de-

FIG. 3. Time dependence, from Eq. (7), of the average cel]
area A and of the relative standard deviation ((A/A —1)2&'t2 in

the network, indicated by curve N. Curve 0 results from re-

placing the step function n, (A/A, ) in the growth rate by the
smooth function 2+4(A/A, )'t1, and shows the scaling regime
found in Ostwald ripening. [Units: Area in units of the initial

average area A (0); time in units of the coarsening time scale
A (0)/k, see Ref. 8.1

viation around 3.2. I have no analytic derivation of a fi-
nal collapse of the distribution function, but it does not
seem to be an artifact of the finite number of cells em-

ployed in the integration routine (see Ref. 13)—which

might be a source of concern with such a broad distribu-
tion. In any case it should be realized that the point at
which the collapse observed here occurs lies outside the
range of samples analyzed by Aboav (which has a max-
imum standard deviation of 1.7 in the distribution of the
number of sides), and this would explain why it has not

been seen in those experiments.
What is the origin of the anomalous coarsening of the

network? By application of the Lifshitz-Slyosov method
of analysis3'4 to Eq. (7), the absence of scaling laws can
be traced to the plateaus in the growth rate (see Fig. 2),
and thus ultimately to the topological constraint of a
space-filling network. This is illustrated in Fig. 3, where
it is shown that the LSW scaling regime of grain growth
(Ostwald ripening) is recovered if the step function of
Fig. 2 is replaced by a smooth curve. It is remarkable
how drastically the network topology affects its dynam-
ics. The evolution of the network (curve 1V in Fig. 3)
differs from the Ostwald ripening dynamics (curve 0) in

two respects: (1) Instead of the linear time dependence
of the average area, corresponding to a constant coarsen-
ing rate, the network shows two alternating regimes of
slow and fast growth. The effective coarsening rate of
the network, averaged in time over the two regimes, is

roughly the same as in the Ostwald ripening process. (2)
Instead of reaching a time-independent scaled distribu-
tion of areas, the network shows a scaled distribution
which, in the above two regimes, alternately broadens
and collapses. Note that the time scale of this alternation
is in general very slow: Use of the numerical values from
Ref. 8 gives a duration of 10 d for the initial regime of a
broadening distribution. Aboav's data, s in contrast, ex-
tends only over a period of about 4 d, and is indeed still
well in the broadening regime. Clearly, more extensive
measurements are needed.

In summary, the theory presented above, based on a
simple "mean-field" free energy, offers an explanation
for the intriguing nonscaling dynamics of 2D soap-film
networks. It is shown for the first time that such
anomalous behavior can be obtained by incorporation of
topological constraints into the classical LSW theory of
grain growth. More experimental data are needed to
determine the importance of neglected effects, in particu-
lar of correlations.

Valuable discussions with Professor P. Mazur, Profes-
sor P. Nozieres, and Professor M. F. H. Schuurmans are
gratefully acknowledged.

Note added. —In a recent publication, %ejchert,
%eaire, and Kermode' report on the numerical simula-
tion of a soap-froth model which is similar to (but not
identical with) the model analyzed above. They do not
find the anomalous behavior seen in the experiments
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analyzed in Refs. 5 and 6, and stress the need for more
experimental measurements.
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