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Critical Behavior of an Ising Spin-Glass
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Critical behavior of Ising spin-glass with + J distribution is discussed. The results are based on
the high-temperature series expansion of Edwards-Anderson susceptibility in powers of
w ( = tanh2J/kT) for 2D, 3D, and 4D "cubic" lattices to orders 19, 17, and 15, respectively. The
lengths of the series are comparable to the best available for the pure Ising model. While 30 and
40 systems exhibit transitions at finite temperatures, in 20 a zero-temperature transition with a
power-law divergence (in inverse temperature) for the susceptibility is found. The estimates of
critical temperatures and exponents are presented.
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Following the pioneering work of Edwards and An-
derson' there has been a growing interest in under-
standing how the spina freeze into a randomly oriented
spin-glass state in the language of phase transition. 2

By now the mean-field theory for the infinite-range
model is well understood. 3 For short-ranged models
various calculational techniques including high-
temperature series expansion, real-space renormaliza-
tion group, 5 exact transfer-matrix calculations for
finite-size systems, s defect scaling, ' and numerical
simulationss 9 hive been used. The predictions for the
lower critical dimensionality (dL) below which no
transition occurs at finite temperatures have ranged
from 2 to 4. In fact, for a long time, dL was generally
believed to be 4 for Ising spin-glasses. However, re-
cent numerical simulationss s in 3D systems strongly
suggest a phase transition at a finite temperature.

The purpose of this paper is twofold. The first pur-
pose is to report on an extensive high-temperature
series expansion for Ising spin-glasses with + J distri-
bution. The estimates of the transition temperature
and the exponent of the Edwards-Anderson suscepti-
bility are presented for 2D, 3D, and 4D systems.
While the results for 2D and 4D are new, for 3D simi-
lar results have been recently reported in numerical
simulations. s 9 The evidence is now overwhelming,
both from series analysis and from numerical simula-
tions, that the spin-glass ordering occurs at a finite
temperature in 3D. The second purpose of this paper
is to demonstrate that the series-expansion method is a
valuable tool for understanding the critical behavior of
disordered systems provided it is carried out to high
orders and is analyzed with sufficient care. From our
present work it is now evident why earlier attempts to
obtain information from high-temperature series led to
incorrect results. The series were simply too short.
Previously only the first ten terms in the power-series
expansion in the variable w (=tanh2J/kT) for the
Edwards-Anderson susceptibility were known. Here,
this expansion is carried out to nineteenth order in
2D, to seventeenth order in 3D, and to fifteenth order
in 4D. Analogous series for the susceptibility of the

p«e Ising model are known to 21st order for 2D
square lattices, to nineteenth order for 3D simple cu-
bic lattices, and to seventeenth order for 4D hypercu-
bic lattices [The expansion parameter in this case is

10

u ( = tanh J/kT). J We hope that this paper will stimu-
late further interest in the use of series-analysis tech-
niques for disordered systems.

The Ising spin-glass is described by the Hamiltonian

—p'FF = XJ,P;S, (1)
(i,j )

Here the sum runs over each nearest-neighbor pair
once. S; is the Ising spin at site i which takes values
+ 1. J„" are independent random variables and with

equal probability take values + J. The Edwards-
Anderson susceptibility is given by

X„=N-'X, X,[(S,S,)'],.
Here N is the total number of spins. Angular brackets
refer to thermal averaging and the square brackets
refer to averaging with respect to the distribution of
J;J.

An important ingredient of our calculation is the ex-
istence of the star-graph expansion (to be explained
below) for Xso', i.e., XsG' can be written explicitly as a
sum over star graphs only. " That such an expansion
holds for the free energy was proved by Ditzian and
Kadanoff. '2 Our proof for Xso', which will be dis-
cussed in the longer version of this paper, ' is a gen-
eralization of the proof given by Rapaport' for the in-
verse susceptibility of the pure Ising model. In this pa-
per we entirely concentrate on Xso. The series for the
free energy will be given elsewhere. '3 Since the
nonanalyticity of the free energy is rather weak, this
series is difficult to analyze. %e are currently looking
into this problem.

%e calculate Xsz using a method similar to that used
for the calculation of the susceptibility of the pure Is-
ing model. ' lt can be shown'3 that

Xso' = I + Xs L (g, ) ~ w (g, ). (3)
Here the sum g, is over all topologically distinct star
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graphs. A graph is said to have a point of articulation
(k) if cutting all the bonds incident at k and removing
the piece connected to k splits the graph into discon-
nected parts. A graph with no such points of articula-
tion is called a star graph. L(g, ) is called the lattice
constant of the graph and is simply the number of
ways per lattice site that the given graph can be em-
bedded in the lattice. 8'(g, ) is the weight of the
graph.

In order to calculate the susceptibility series to order
N one needs to carry out the summation in expression
(3) for all star graphs with N or less bonds. In our cal-
culation graphs were systematically enumerated with
increasing cyclomatic number'5 and the lattice con-
stants were evaluated following an algorithm due to
Martin. '6 The weights were calculated by computation
of the amplitude pG, defined by (N„ is equal to the
number of vertices in the graph)

yG= x,~(M '),J —&„, (&)

for a graph and then the weights of all its subgraphs
were subtracted off. Here the matrix M is defined by
its elements MJ given by MJ = [(s;s&)z]J. This
method provides us with a large number of checks for
the correctness of each weight. Since the weight of a
graph with r bonds must start as iv', all lower powers of
w must cancel completely in the process of subgraph
subtraction. Hence any small error would immediately
show up. Unfortunately such an elegant internal check
does not exist for the generation of the lattice con-
stants. We checked their correctness by using them to
calculate the susceptibility series for the Ising model.
Our Ising-model series agree with those in the litera-
ture. '0 All computations were done on a RIDGE 32

minicomputer. Let us ~rite the susceptibility series as

Xso= 1+X„a„w". (5)
The coefficients a„are given in Table I.

Here the first three terms (identical to the pure Ising
model) contain little information on spin-glass order-
ing. In fact, one cannot hope to see any spin-glass
behavior until one gets contributions from diagrams
involving closed loops. This is because frustration is
an essential feature of spin-glass and only occurs in
closed loops. Hence any analysis which depends very
sensitively on the first few terms is likely to give in-
correct answers. It has been pointed out by Nickel"
that the use of an Euler transform of the form
z = w j(1+bw ) to go from a series in w to a series in z
amounts to weighting all the higher-order coefficients
with the lower-order ones. And with a larger b the
higher-order terms in the original series are almost en-
tirely suppressed. Although this procedure can give
apparent convergence, one is using the early terms to
estimate the critical behavior. %e have avoided the
use of Euler transforms entirely in our analysis.

We have found the method of first-order inhomo-
geneous differential approximants's '9 most suitable to
our analysis. We construct three polynomials P&, P2,
and P3 of order M, L, and J, respectively, such that
(P, (0)- Il

P, (w) (df/dw ) + P, (w )f(w)

P (~) +g(~M +L+J+2) (6)

where f is the function, with a power series in w, that
is being represented. One can show that at points w,
where Pi ( w, ) = 0 the solution to the differential equa-
tion has a singularity of the form ( w, —w ) " with

TABLE I. Coefficients a„ for various cubic lattices.

1

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

2D

12
36
52

116
-108

228
-2380

4084
—14 660

80052
—185 268

877 428
—3 055 852

9445 156
—42 230748
141 760 852

—545 628 100
2140 276 820

30
6

30
150
582

2454
6870

25 782
34 374

202 486
—323 730
3 428 262

—8 217 746
110253 462

—241 502 106
2 495 638 934

—12 217 497 930
48 017 425 206

4D

8
56

392
2408

15 272
85 352

508 808
2 625 896

15 111976
72067 672

421464 680
1 851 603 192

11 810 583 208
46 346 625 320

347729 503 368



VoLUME 57, NUMBER. 2 PHYSICAL REVIEW LETTERS 14 JULY 1986

y = P2( iv~ )/Pi ( w~ ) ~ Note that t11e inhomogeneous
term P3 does not affect the critical behavior, and that

P3 only affects the coefficients of iv' in Eq. (6) with
i ~ J. Hence I'& and P2 are entirely determined by a
comparison of the coefficients of w' with J + 1
«i «M+L+J+1 in Eq. (6). Thus the critical
behavior does not depend on the first J terms, making
these approximants better suited to this problem. This
was observed by Fisher and Au-Yang. '

For a series of given length a large number of ap-
proximants can be constructed corresponding to dif-
ferent values of M, L, and J. Not all of them are
equally well behaved. For reasons of convergence
Hunter and Baker'9 suggested the use of approximants
in the neighborhood of (M, L = M —2, J= M —2).
We have looked at all the approximants and our results
are based on those which show the best convergence.
The following types of approximants are considered
defective and hence are discarded: (i) approximants
where a zero of P2 comes very close to the physical
singularity, giving rise to an anomalously small value
of the exponent y; (ii) approximants where a zero of
P, occurs close to the origin on the positive real axis,
hence hindering the integration of the differen'. ial

equation in Eq. (6) from the origin to the critical re-
gion; (iii) approximants where a zero of Pi and a zero
of P2 occur within a distance of 0.001 anywhere in the
complex plane.

It should be remarked that the failure of certain ap-
proximants to give the correct global representation of
the function does not necessarily imply that the critical
parameters are incorrectly represented; however, to be
on the safe side it is better to ignore such approxi-
mants. "

For the 3D series we construct all approximants with
4«M«7, 2«L «5, 2«J«6. After discarding
the defective approximants and restricting ourselves to
those which use up terms in the series at least up to
fifteenth order we are left with thirteen approximants.
On this basis our estimate is (the uncertainty refers to
the standard deviation) co, = 0.48 + 0.04 ( T, = 1.2
+0.1), y-2.9+0.5. This can be compared with the

Monte Carlo data (Ogielski, Ref. 9) T, = 1.17S
+0.025 y=2.9+0.3. In Fig. 1 we give a representa-

tive plot for XsG obtained by solving the differential
equation [Eq. (6)].

In 4D we consider all approximants with 4 «M «9,
2 «L «6, and 1 «J «5. Discarding the defective
approximants and keeping only those which use up
terms in the series at least up to thirteenth order ~e
are left with 27 approximants. On this basis our result
is», =0.21+0.01 (T, -2.02+0.06), y=2.0+0.4.
Our results are in sharp contrast to the earlier work of
Fisch and Harris, 4 ~ho had predicted, on the basis of
their ten-term series, that y ~ in 4D. Indeed, we
find rather large values of y if we consider only ten
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FIG. 1. A representative plot for gg~' in three dimensions
obtained by integration of the (L =5, M = 6, J = 3) dif-
ferential equation with the boundary condition f(0) = l. On
the scale of the plot ten different approximants essentially
coincide with the curve. The maximum deviation occurs
near T=1.5 and is of the order of 0.0005.

terms (y =50); however the approximants are mostly
defective. An analysis of how the estimates rapidly
settle down as a function of the order of the series will

be discussed elsewhere. '3

A similar analysis in 2D shows no convergent singu-
larity in the region of interest which we interpret as the
absence of a finite-temperature transition or an essen-
tial singularity at zero temperature. z2 The variable iv,

then, is not the appropriate expansion variable as it has
an essential singularity at T=0. Hence, we express
the series in terms of a new variable z ( = 1/T2). The
method used for estimation of y in this case is due to
Baker, Rushbrooke, and Gilbert. z3 We expect that
(d InX/dlnz), = —,'y. We construct a power series
in z for the expression (d InX/d lnz) and do a diagonal
[M/M1 Pade to estimate y. This method only uses
series of even orders. To get estimates from series of
odd orders we consider A (z ) ( = d X/dz ) instead of X.
Our best guess is y=S.3 (with an uncertainty of
+ 0.3).

It is evident from our estimates that the uncertain-
ties in various critical parameters are roughly a hun-
dred times those for the corresponding estimates from
a series of the same length for the pure Ising model.
While in the Ising model the physical singularity is the
closest to the origin, and determines the radius of con-
vergence of the series, here it is not so, making it diffi-
cult to locate the critical point.

To conclude we would like to summarize our work.
We have shown that Ising spin-glasses have a finite-
temperature transition in 3D and 4D, and a zero-
temperature transition in 2D. Clearly the conclusions
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dragon from the earlier series analysis were incorrect.
%e have also presented estimates of the critical ex-
ponent y which characterizes the divergence of the
Edwards-Anderson susceptibility of a spin-glass. Our
value of 7 for the 3D case is in excellent agreement
with the recent results obtained from numerical simu-
lations. The agreement is equally good for the transi-
tion temperature. Our results for 2D and 4D are,
ho~ever, new.

From the point of view of series expansion we have
shown that using the star-graph expansion it is possible
to derive a series which is comparable in length to the
best available series for the pure Ising model. This
gives us the hope that the series expansion method can
be a valuable tool to study other disordered systems.
In this respect we have emphasized the fact that for
thc spin-glass problem it is very important to obtain a
long series. Furthermore, since the series for disor-
dered systems are likely to be noisier, it is important to
develop sophisticated methods of analysis. We have
discussed some of these concerns in the present con-
text.

We would like to thank B. G. Nickel for suggesting
that there may be a star-graph expansion for the
present problem, and A. P. Young for many stimulat-
ing discussions. Thanks are also due to M. E. Fisher
for comments regarding the analysis of the series.
This work was supported by a grant from the National
Science Foundation (NSF-DMR8301510) .
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