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Theoretical Model of Fishbone Oscillations in Magnetically Confined Plasmas

B. Coppi and F. Porcelli®

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 14 November 1985)

The onset of electromagnetic oscillations that are observed in magnetically confined plasmas where
beams of fast neutrals are injected is associated with the excitation of a mode with poloidal wave number
m®=1 and phase velocity equal to the core-ion diamagnetic velocity. The resonant interaction of the
mode with the beam ions is viewed as a form of dissipation that allows the release of the mode excitation

energy, related to the gradient of the plasma pressure.

PACS numbers: 52.35.—g, 52.55.—s

A new type of instability has been observed in magnet-
ically confined toroidal plasmas where beams of fast neu-
trals are injected nearly perpendicular to the equilibrium
magnetic field. The poloidal magnetic field fluctuations
produced by this instability have a characteristic signa-
ture and are called “fishbone oscillations.”!? Particle
bursts corresponding to loss of energetic beam particles
are correlated with fishbone events, reducing the beam
heating efficiency and thus limiting the maximum
achievable B [=(kinetic pressure)/(magnetic pressure)]
by this technique.

We present the results of an analysis that supports one
of the interpretations® advanced when these experimental
observations were first reported. This consisted of pro-
posing the following: (a) The excited mode, whose spa-
tial structure is dominated by the component with po-
loidal wave number m®=1, has a frequency related to
the ion diamagnetic frequency and is one of the two

=] modes that are found under the conditions for
ideal MHD instability, but are rendered marginally
stable by finite ion Larmor radius effects*; (b) the mode
“excergy” (excitation energy) is related to the plasma
pressure gradient; and (c) the presence of a “‘viscous”
dissipative process (e.g., produced by a mode-particle res-
onance that scatters the beam ions) is required for the in-
stability to develop.

We refer, for simplicity, to a large-aspect-ratio axi-
symmetric toroidal confinement configuration with circu-
lar magnetic surfaces, and consider perturbations of the
equilibrium field that are dominated by the m®=1, n®=1
poloidal and toroidal components. The relevant model
dispersion relation is*

[w(w— 0g)1"* =i ymup 1)

when we omit mode-particle resonances and other dissi-
pative processes. Here, wqgi= — (c/eBrn)dp;, /dr is the
ion diamagnetic frequency evaluated at the surface r =rg
where the pitch angle of the unperturbed equilibrium
magnetic field equals that of the perturbation, and p;, is
the transverse ion pressure. The ideal MHD growth rate
yMHuD IS given by* ymup=wiAy, where wq=v46§/ro
with v4e=Bg/(4nm;n;)\2, §=dIng/dInr, g =rB;/RB,,
R is the major radius of the torus, Ay —lo(ro/R)z([i,J

—PBerit), Ao is a finite numerical factor, B,=—(R/
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)Zf dr r*(dp/dr), and, for a parabolic g profile,>
Bp,cm =./13/12. The ideal stability parameter Ay is the
negative of the (normalized) minimum value of the per-
turbed potential energy4 OW min and the dispersion rela-
tion (1) is valid for Ay > 0. In the realistic limit where
ymuD < wgi, the dispersion relation (1) yields two (mar-
ginally) stable roots: one with ® = (ymup/@gi)’wai, and
the other with @ = wy; that we argue to be the mode ex-
cited by the injected beam. Following an observation
given by Coppi, Rosenbluth, and Sudan® we may argue
that the two roots of Eq. (1) are waves with energies of
opposite sign. Thus, one of them will be damped and the
other destabilized when a dissipative process is intro-
duced.

In the case of plasmas where fast neutrals are injected,
the relevant mode-particle resonance’*® o (e,u) =w in-
volves beam ions with energies £ =m,v%/2 and magnetic
moments p=mhvi/28, where a)S},)(s,/,t) is the average
(along the orbit) magnetic drift frequency of the energet-
ic (h denotes hot) ions that have magnetically trapped or-
bits. This dissipative process will be more important for
the root ®=wg;, as wg/@ Y ~ (T:/Tw) (R/r,) (1 +n;) ~1
for typical beam parameters, where T; () is the core-
ion (hot-ion) temperature, r,=|dlnn;/dr| ", and n;
=d InT;/d Inn;. In this case, the dispersion relation (1)
including the effect of viscosity can be put in the form®

(0+iv,)(0— wgi) = — YHD, )

where v, is introduced to represent the rate of resonant
momentum exchange between the beam and the mode.
The solution of (2) with ® =wg+ dw, |dw| < wg, corre-
sponds to an unstable mode with growth rate
y=Iméw = (ymup/®qi)*ve. A small damping term relat-
ed to the plasma resistivity has been neglected.

The low-frequency solution of Eq. (1) with
== y#up/wai does not interact efficiently with the beam,
as o < (oS}.), but is destabilized by the longitudinal resis-
tivity ny. In this case, the dispersion relation (1) is modi-
fied into*

00— wgi) =~ Y&up — i v;0i/(0 — ws.), 3)

where v, '~4nr?/nic?, wie=wy.+(1.71c/eBro)dT./dr
~ wg;, and wy. = (cT./eBro)d Inn/dr is the electron drift
wave frequency. The relevant growth rate is y== v,,cof,/
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| @giwse |. Thus, two roots of the dispersion relation for
m®=1 modes can be simultaneously unstable: One root,
with @==wyq;, corresponds to the fishbone oscillations,
while the second is the usual (resistive) internal kink
mode (in the regime 0 < yMpup < @q;) that is responsible
for the “crash” phase of sawtooth oscillations.* The fish-
bone mode, which has a larger growth rate, is not as hard
to excite as the resistive internal kink. Accordingly, fish-
bone oscillations are observed to grow, saturate, and
damp on a time scale considerably shorter than the
sawtooth period.

We describe now the main analytical steps to support
our theoretical model. The structure of m®=1 modes is
characterized by the presence of a transition layer of
thickness &, centered around the surface r=rgy where
inertial as well as nonideal (such as resistive) effects be-
come important.* Away from this layer, field and fluid
are coupled as in the infinite-conductivity case, so that in
this “outer” region a simplified ideal-MHD description
of the fluid motion is feasible. We derive a normal-mode
equation by matching the solution of the normal-mode
equation in the boundary layer to the outer MHD solu-
tion.

In the outer region, the following MHD equations ap-
ply to the core plasma:

where p.=p.+pi;, J.=J.+J;=e(nu;—n.u,), and u
=y, is the core-plasma fluid velocity. These are coupled
with Maxwell’'s equations VXE=—(1/c)dB/dr and
VxB=(4n/c)J, where J=J.+J, is the total current,
J, =e fd3v v/ is the beam current, and the beam distri-
bution function f} satisfies the Vlasov equation. Apply-
ing the operator e VX to the linearized Eq. (4), neglect-
ing the core-plasma inertial term, we obtain

e Vx(B-V)B+(B-V)B
=(4n/c)e;- Vx (I, xB). (6)

We consider a normal mode structure of the type
B=[B(r)e *+B(r,0)lexplio—iwt),

where we can order B(r,0)/B(r)~ey=a/R, given the
poloidal modulation of the low-p toroidal equilibrium (a
is the torus minor radius). This ordering allows a trunca-
tion of the set of coupled equations generated by the po-
loidal expansion of Eq. (6). In particular, the m®=0 and

=2 satellite harmonics can be obtained explicitly in
terms of the m®=1 component.” We also consider rela-
tively low values of the beam poloidal beta, that is
Bp.r < €0Bp. With this ordering, only the hot-particle
resonant (dissipative) term need be retained. This pro-
cedure leads to the following equation for the radial dis-

mn;du/dt = —Vp.+J,xB/c, 4) placement &, (r) =ia, (r)/w:
E+uxB/c =0 (s) (d/dr)[FPF*dE&/dr)] =g (N +b(r)]e,, @)
’ where = —B,(1 —q)/r g(r) is such that*® Ay
= —[n/(Bos )2-,°]f g(r)dr, and b(r) is defined as
b(r)E,(r) = — (4mir/c ey Vx (J; x B)exp(z‘O— i¢+iwt))ies, 8)

with (4)=¢ 4(d6/2x) and the subscript “r

" indicates that we consider only the resonant hot-particle contribution.
By analogy with the definition of Ay, we mtroduce irg=In/(Bo§)?=,)] f °b(r)dr, and Ay =iy —iAy.

We observe that

the beam contributes to the real part of Ay both indirectly, by raising the temperature of the core plasma, and directly
through the nonresonant part of J;, that, however, we neglect, given the ordering of B, 5 that we consider.

To evaluate A4, we consider for simplicity an equilibrium magnetic field of the type B=1[Bq(r)es+ B 4oe,1/h (r,0),
where h(r,0) =1+ (r/R)cosf. Expanding the right-hand side of Eq. (8), we find

e Vx(J, xB)= —ieBowlA, — e (1
where wpy = —ivp,- V, vpy is the magnetic drift velocity,
@pp =0pp (e =gres; A=Ag), €rs is the energy of the
resonant beam particles [defined in such a way that
@) = and the superscript (0) indicates average along
the unperturbed particle orbitl, A=uBh/e, Ag=I1
+(r/R)]Icos’ainj, and aiq; is the beam injection angle.
We have used the hot-particle continuity equation to re-
late V-J, to As. The transverse beam pressure p,j is
evaluated directly from the relevant perturbed distribu-
tion fugction and we have verified that, to lowest order in
pn/a, Jy=ceyxVp ;. For mode frequencies below the
bounce frequency of the trapped beam particles, and for
Im(w) < Re(w), the resonant part of the perturbed beam
distribution function is approximated by

fh,,es= —ine(dfpo/de) (0 — w,.;,)li/“’)é(s — Eres),

—Ao/2h) "N (@pn/w)p 1],

where fro(r;e,A) is the equilibrium distribution function
for the beam

dlnfon/dr

-1
dlInfon/de (i Q)

Wy p ==

and
\I/=[(a)m./w)$+ (L‘_ZL/ZQ},C )éu]e/s.

When the ideal-MHD relation (5) and Faraday’s law are
used to relate the perturbed electrostatic potential ¢ and
Bi to & we obtain §=[(3A/h)—2]&-7, where
t=(e;- V)e;. Then, we use a beam distribution function
Son =S(r)e~320(g;n; — £) 5(A — A), where

S(r)=(r/R)p .4 (r)/4Kmp&in;,
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€in is the beam injection energy, 8(x) is the step func- In the transition layer, we consider the effects of iner-
tion, and K is the complete elliptic integral of the first tia, resistivity, core-ion diamagnetic frequency wgqi, and
kind of argument 2=(R/ 2r)sin2ai.,j. We also notice electron drift frequency w... The hot-particle contribu-

that o~ wg; < wep. The final result for iAy is tion is not important here. This is principally due to the
) ) . fact that, for the type of mode-particle resonance that we

ihy = (i w/238) (ro/ R) 0/ @ph) Bp s ©) consider, the dominant part of the associated ‘“‘dissipa-
where @py =08 (r=ro,6 =i, A=1+r¢/R) and tive” term does not involve radial derivatives of the plas-
r ma displacement which would become very large near the

Bow=—(R/r§ )2f dr r*(d B/ dr ) 6(Ein; — Eres). surface r=rqo. Thus, we refer to Ref. 4 for the form of

0 the normal-mode equation in the transition layer. The

(Notice that g5 goes to infinity near the radius where asymptotic matching procedure, which is well known in
k?=1 and the beam particles become untrapped.) the literature,* involves the quantity A} that we have pre-

| viously defined. This leads to the dispersion relation'®
[— @D — @)1V =0y —irg) (@Y ((Q —1)/4)/T((Q +5)/4)}, (10)

where Q2=i (& — ;) (® — @)/ ey, D=0/ 4, i =05/ ® 4, De =Wue/w 4, and ea=nc*/4nr§ w 4.
The most interesting case is the solution of (10) for values of Ay such that (e,,/(b,-)l/2 <Ay < @. In this regime, the
dispersion relation (10) reduces to

[(f)+i2)~y7\.h/((b,‘ -l o—a;)= _7»%1 “5i€,,/2((;)—(2)¢), 11

and this can be related to the model dispersion relations (2) and (3). The relevant growth rate for the fishbone root with
C?)z(.;),' is

y=(/50)*(ro/R)(@%/@pn By s — 5 £q0 3/ lwgi(wai — wi,)). (12)

The lower-frequency mode is made unstable by the elec-
trical resistivity and has the growth rate y=3¢,03/ mode. Another possibility that we consider is that the
| wgiwse | . For both roots, the eigenfunction reduces to* mode damping due to resistivity is responsible for the de-
& (x) =(£/2)[1 — (2/m)arctan(x/Ay)], where x=(r  cay phase of the fishbone. Then, the following nonlinear
—ro)/ro. For typical fishbone experiments, Ay~ (ro/  model for the entire cycle, analogous to the one presented
R)? &;~ro/RZPps~107", and £,~1077. These esti- by Chen, White, and Rosenbluth,'? but consistent with
mates, together with wgi~20 kHz, yield a growth time our linear instability process, can be constructed. We
y~!'<1 msec for the fishbone mode, consistent with the consider, for simplicity, the normalized mode amplitude

time over which significant beam particle losses were ob- A =|Bg|/Bg and the beam density n; as the two quanti-
served in the poloidal-divertor-experiment (PDX) ties that vary significantly with time during a fishbone
machine.! cycle. Considering values of Ay > (g,/ ®:)'2, we have

Equation (12) sets a threshold for the instability of the  [see Eq. (12)]
fishbone that involves the relative values of the core-
plasma B, (appearing in the definition of Ag), By, and 04/8t = — y,4 + ymup(np/no) 4, (13)
e, We observe that when the ideal-MHD instability
condition is only marginally satisfied [|Ag| < (e,/
@;)'], the limiting form of the dispersion relation (12) no=o/m)*(R/r)(@pn/ w4 )y By4),
is @(@—a;)(®@—d,)=—ig, ie., it is independent of
Ay. In this regime, the fishbone root is stable, having an witl} {np) and (B, ) time-average values of ny and B, »
eigenfrequency &=a@d; —i eq/2|(;,,.c;,e|. We also observe during a cycle. The beam particle density is taken to
that, in the limit In(Ag) > (¢,/&;)*>Re(Ajy) — 0, the ~ vary as
mode eigenfunction associated with the eigenvalue &= @;
becomes singular at the r=r¢ surface. Consequently,
Re(Ly) > 0 is a necessary condition for the instability of where S is the beam source term, Rt =no(y,/ymup)

where 7, =3 €,03/l04(wdi — 0xe)], YMaD =Anw4, and

an;,/at =Sy — )’anmAz, (14)

this mode. ~ny, and y.A4%~10% sec”! is a measure of the hot-

The resonant scattering of beam particles produced by particle loss rate. A simple analysis of Egs. (13) and
an excited mode is a relatively easy process to understand (14) shows that a cyclic solution exists with period
and describe.®!" This process tends to remove the  tm~2AAx/y, 2 when (AAR/T)?2>1, where 7y =(n
resonating particles and the associated ion dissipation, so — Nerit) /iy ARy =max{fAp}, and T?=S,/y,nci. Then,

that the “excergy” in the plasma pressure gradient is no for typical PDX parameters, we find ¢ ~2-6 msec. The
longer accessible, leading to saturation of the fishbone level of fluctuation of the poloidal magnetic field is typi-
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FIG. 1. Representation of the poloidal field fluctuation

| B¢|/B (solid line) and of the corresponding density of the en-
ergetic particle population Ay = (ny — nerit)/nerit (dashed line) as
a function of time for typical fishbone experimental parameters:
(a) I'=0.14, y,,"8.5><103 sec”!; (b) I'=0.32, y,,"4.0><103
sec”!

cally found to be A ~ (y,/7,)I'~10"2. An example of
the numerical integration of Egs. (9) and (10) is shown
in Fig. 1. In the experiments, the type of fishbone shown
in Fig. 1(b) was more frequently observed near the
threshold of ideal marginal stability, where the fishbone
activity is lower and the fraction of scattered beam parti-
cles (Any) is smaller. The excited mode, that has the
structure of a kink, can be expected to produce a local

flattening of the plasma pressure profile near the r=rg
surface; the corresponding decrease of wg; may explain
the observed drop of the mode frequency (by as much as
30%) during a fishbone burst.

A different theoretical interpretation of the fishbone
instability has been advanced and presented in Ref. 12.
Considering the limit wg4; =0, the authors of Ref. 12 indi-
cate having found a new m®=1 mode with a frequency of
oscillation related to @py. In this paper we have instead
proposed that fishbone oscillations are related to an
m®=1 mode that is well known in the literature* but
which necessitates a positive dissipation process to be
driven unstable. In particular, the frequency of our mode
is not anchored to @p, being finite. This conclusion is
consistent with the most recent observations presented by
Heidbrink er al.'®> and concerning experiments with
beams injected tangentially to the magnetic field.
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