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Experimental Test of Higher-Order Electron-Captnre Processes
in Collisions of Fast Protons with Atomic Hydrogen
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%e present measurements of the angular distribution of fast hydrogen atoms formed by electron cap-
ture of 2.8- and 5.0-MeV protons in atomic hydrogen. In the angular region of the Thomas peak (0.47
mrad) the experimental results obtained with this pure three-body collision system are in reasonable

agreement saith a strong-potential Born calculation and the impulse approximation, but not with other
higher-order theories.

PACS numbers: 34.70.+e

At present there is great interest in electron capture in

ion-atom collisions at high projectile velocity. High velo-

city here means that the projectile velocity is much

higher than the Bohr electron orbital velocities in the ini-

tial and final states. Because of the rapid transfer of the
electron from the target bound state to the fast-moving
projectile bound state, a large change of electron momen-

tum and energy is required which must be transferred to
a third particle, which can be, in the case of nonradiative
capture, the target nucleus. This process is theoretically
attractive, '2 since higher-order terms of the electron-
nucleus interaction become important in order to mediate
this energy and momentum transfer. Formally, higher-
order terms can be described by perturbative series ex-
pansions like the Born series. In the last few years dif-
ferent approaches to these series expansions have been
developed, e.g. , second-order Born (82),3 strong-
potential Born (SPB),s s impulse (IA), '~'2 continuum
distorted-wave (CD%), ' '4 and eikonal approximations
(EA)."

The higher-order terms in the capture amplitude can
be interpreted as multiple scattering of the electron at thc
target and projectile potentials. In this view the second-
order term is a double scattering for the capture of the
electron, where the electron is first scattered at the pro-
jectile and then at the target nuclear potential as
described first classically by Thomas. ' This leads to a
peak at a forward angle 8 (rrt/Mz)sin60' (m is the
electron mass; M~ is the projectile mass) in the angular-
differential capture cross section. The shape and abso-
lute magnitude of the differential cross section may be
determined not only by first- and second-order, but also

by higher-order terms in the series expansions mentioned
above. ' However, in such treatments and at high col-
lision velocities the description of the asymptotic states
even to first order is a difficult task. ' The ultimate ex-
perimental test of these theories can only be performed
with a pure three-body collision system. %e have there-
fore studied the three-body collision system p-H by
measuring the angular-differential electron-capture cross
sections at 2.8 and 5.0 MeV.

Among the different experimental approaches to test

higher-order contributions to the electron-capture ampli-
tude were studies of the electron cusp from capture into
projectile continuum states. In these experiments, some
signature of higher-order terms could already be identi-
fied. 's's In total cross sections of electron capture the
higher-order terms might dominate the first-order term
at very high collision energies, ' e.g. , for p on H above 100
MeV, where, however, the cross sections are extremely
small. Calculations in a relativistic approach2n show that
the nonrelativistically expected' asymptotic energy de-
pendences do not occur. For the measurement of the
Thomas peak in the angular distribution of the charge-
changed projectiles which should arise above 2 MeV for

p on H, one has to measure very small scattering angles,
0.47 mrad for p as projectiles. Horsdal-Pedersen, Cocke,
and Stockli2' have recently been able to identify the Tho-
mas peak at such small angles; however, a decisive test of
the theoretical models could not be accomplished. This is
due to their choice of two-electron targets (He and H2),
which makes the comparison of their results with the
three-body calculations currently available somewhat
questionable, since not only are higher-order theories
themselves tested but also the methods through which the
second electron is incorporated in these calculations.

Even experimental data of total electron-capture cross
sections of p in H at energies up to 5 MeV were not
available until now, because of the lack of an atomic-
hydrogen target with a low enough level of heavy-atom
impurities. In the present work we were able to overcome
this problem and to observe for the first time in the
angular-differential capture cross sections for protons in

atomic hydrogen a clear peak which is due to higher-
order effects in the electron-capture amplitude.

The experiments were performed at the model EN tan-
dem accelerator of thc Max-Planck-Institut fur Kern-
physik, Heidelberg, where proton beams of 2.8 and 5.0
MeV after collimation to less than 0.05 mrad divergence
impinged on an atomic-hydrogen gas target. Before
entering the target region the beam was cleaned of
charge-state impurities by magnetic deflection. Behind
the target an electrostatic deflection of about 10 kV/cm
was used to deflect the proton beam into a Faraday cup
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for normalization. The angular (8) distribution of the
neutralized projectiles relative to the beam axis was mea-
sured by a position-sensitive surface-barrier Si detector,
located about 5 m away from the target. This detector
was covered with a mask which allowed us to measure
de/18 and simultaneously to align and to control the po-
sition of the detector relative to the neutral-beam axis.
The position calibration of the detector (position resolu-
tion 0. 1 mm) was done with a collimated Am alpha
source, which could be scanned across the detector.

The molecular hydrogen gas was dissociated in a de-
current-operated discharge tube. The main difficulties
which had to be overcome in this experiment were impur-
ities of heavy elements in the atomic-hydrogen target
which appeared, e.g., by sputtering in the discharge tube.
The cross sections for capture from the heavier atoms in

the background gas are orders of magnitude larger than
the cross section for hydrogen. Therefore, special treat-
ment of the discharge arrangement was necessary, such
as cooling the complete discharge tube by immersion in

liquid nitrogen in order to freeze out impurities to a frac-
tion of less than 10 s of the hydrogen pressure (for
determination and subtraction, see below). The cooling
also helped to raise the dissociation fraction to above 90%
by reducing the recombination rate at the target walls.
In order to have sufficient target density at a high disso-

ciation fraction the beam passed directly through a 10-
cm-long differentially pumped part of the discharge re-
gion. By use of energy arguments, the amount of excited
or ionized hydrogen atoms in the discharge is estimated
to be negligible.

The beam profile at the detector position was mea-
sured in order to fold the theoretical predictions with the
experimental angular resolution. In the folding pro-
cedure the geometrical properties of the detector due to
the mask and broadening of the beam profile through
multiple scattering in the target gas were also taken into
account.

The target thickness was determined from the target-
gas pressure and the known target length. This was in-
dependently checked by our measuring elastically scat-
tered protons from He, H, and H2 target gases. For a
more detailed description of the experimental setup and
measurement of the dissociation fraction and target
thickness, see Schwab et al.

The results of the angular-differential cross section
der/d 8 obtained in an 8-hour run with 5.0-MeV p captur-
ing in atomic hydrogen are shown in Figs. 1(a) and 2. A
clear peak at an angle of about 8 0.47 mrad (the Tho-
mas angle) can be seen. Such a peak does not appear in
5.0-MeV p on Ar [Fig. 1(b)]. In electron capture from
argon higher-order contributions to the capture ampli-
tude are negligible at this energy, and therefore a Tho-
mas peak is not expected. The main contributions to sys-
tematic ermrs come from uncertainties of the target-
density determination and are estimated to be less than
30%. In order to correct for impurities in the discharge,
the dependence of the total capture rate N on the hy-
drogen pressure pH was measured. From the clearly
linear dependence of /V on pH a 30% impurity contribu-
tion was determined by extrapolation to pH 0 for the
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FIG. 1. (a) The measured angular-differential capture cross
section der/dg of S.O-MeV protons in atomic hydrogen. Solid
line: SPB-FP calculation for capture from 1s to 1s state. Dot-
dashed line: impulse approximation for capture from ls to ls
state. Dashed linc: CD%' calculation for capture from ls to fi-
nal states up to n 4. All calculations are folded with experi-
mental angular resolution. (h) Measured differential capture
cross section for 5.0-MeV protons in argon.
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FIG. 2. The measured solid-angle-differential capture cross
section da/d0 of 5.0-MeV protons in atomic hydrogen. Solid
line: SPB-FP calculation. Dotted line: SPMS calculation for
capture from 1s to 1s state.
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highest proton energy and the relevant H pressure. In22

addition to Ar, the angular distribution of the capture
cross section was also measured for N2, and the two were

found to be nearly identical in the measured range. Sub-
traction of an angular distribution with N2 and Ar ad-

justed to 30% contribution in the total capture rate did

not yield any difference in the H angular distribution
within the error bars. So the correction with the Ar an-

gular distribution [Fig. 1 (b)] was chosen. Several exper-
iments with somewhat changed setups were performed
with reproducible results.

We compare our data with the SPB, IA, and CDW
calculations. In the SPB approximation the intermediate
electronic states are described by Coulomb waves that in-

corporate one of the two potentials to all orders. The im-

pulse approximation (IA) can be deduced from the SPB
amplitude by neglect of off-energy contributions. In con-
trast with the Born-series calculations, the CDW approx-
imation describes the electronic wave functions by ap-
propriate distortion operators. The solid line in Figs.
1(a) and 2 shows the results of the SPB full-peaking
(FP) calculation, where further peaking approximations
to the SPB amplitude are introduced to evaluate the in-

tegrals. The dot-dashed line in Fig. 1(a) gives the re-
sults of the IA. The dotted line in Fig. 2 shows the
strong-potential McGuire-Sil (SPMS) calculation,
which is an improved SPB calculation where the errors
are of order (Z~/v), compared to Zz/Z, in the SPB-FP
calculation (Zz, Z„and v are projectile and target nu-
clear charge and projectile velocity, respectively). The
dashed line in Fig. 1(a) represents the CDW calcula-
tion. '3 All theoretical curves were folded with the experi-
mental angular resolution described above. The SPB-FP,
SPMS, and IA calculations take into account only nonra-
diative capture from the Is target state to the Is projec-
tile state. The CDW calculation includes nonradiative
capture from 1s to final states up to n 4. At 5.0 MeV a
contribution to the differential cross section in the
Thomas-peak region from capture to excited states was
estimated to be about 20%.

As can be seen from Figs. 1(a) and 2, the IA and
SPB-FP calculations are, in the region of the Thomas
peak, in better agreement with our data in magnitude as
well as in shape than the CDW and SPMS calculations.
Not shown in Fig. 2 are the results of the second Born
approximation (B2), where the intermediate electronic
states are described by plane waves, which leads to an
overestimation of the cross sections. 6 The deviation of
the theoretical results from the data at very small angles
near the forward direction was observed in all measure-
ments and is probably due to strongly forward-peaked'
radiative-capture contributions, which are not taken into
account in the calculations mentioned above.

In Fig. 3 results for p on H at an energy of 2.8 MeV
are shown. As in Fig. 2, the solid line shows the SPB-FP
calculation, and the dashed line shows the CD% calcula-
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FIG. 3. Differential capture cross section der/d0 for 2.8-
MeV protons from atomic hydrogen; lines as in Fig. 1(a).

tion. Both theories are folded with the angular resolu-
tion, which is broader in this case than in the 5.0-MeV
case. Here only a light shoulder is seen at the Thomas
angle. The reason for this comes basically from two fac-
tors. First, the higher-order terms become negligible
with decreasing scaled velocity, and therefore the
higher-order contributions are not so large here as in the
5.0-MeV case. Second, multiple scattering in the target
gas is stronger at this lower energy, and this leads to a re-
duced angular resolution. The gas pressure in a dis-
charge tube can only be varied in a limited range, and
therefore it was not possible to avoid multiple scattering
totally by reduction of the target pressure. This is also
the reason that the systematic errors are about 50%.

In conclusion, we give for the first time experimental
results of angular-differential electron-capture cross sec-
tions in the high-velocity regime with a pure three-body
collision system, p on H. At 5.0-MeV collision energy
the so-called Thomas peak, produced only by higher-
order terms in, e.g., the Born series, clearly appears in the
angular-differential cross section. With use of this peak
and also the valley at about 0.27 mrad it was possible to
test higher-order contributions to the electron-capture
amplitude. The magnitude and shape of this Thomas
peak were found to be in good agreement with the results
of the impulse and SPB-FP approximations, whereas the
CDW and the SPMS approximations underestimate its
absolute magnitude. The magnitude of the differential
cross section around zero degrees angle, which is mainly
determined by the first-order term of the capture ampli-
tude, is well predicted by these theories.
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