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Approximation Theory and the Calculation of Energies from Divergent Perturbation Series
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In problems such as the anharmonic oscillator and the H-atom Stark effect, the energies of bound
states and resonances can be formally expressed in terms of series with a radius of convergence zero. We
propose a method of rational approximation to sum such series and illustrate it by application to the
anharmonic oscillator. In a certain sense this method is close to the best one possible.

PACS numbers: 03.65.Nk, 02.70.+d, 03.65.6e

There are a number of interesting model problems' in

which the energy of a bound state or a resonance is given
formally in terms of a power series in a potential strength

P which has a zero radius of convergence, i.e.,

E(P)- g a,P',
k Q

where the coefficients ai, are real. In some cases (e.g. ,
the anharmonic oscillator with P& 0) E(P) is real and
represents a bound-state energy, but in others (e.g., the
H-atom Stark effect) E(P) is complex for real P, and
corresponds to the energy of a resonance.

Here we describe a technique of rational approxima-
tion23 which can be adapted to the calculation of E(P) in

both situations, and explain how a theorem from approxi-
mation theory shows that, in a certain sense, our method
is close to the best one possible.

I

We illustrate our ideas by applying them to the anhar-

d, ( —P) Sin 't P 't exp( —2/3P)[l+O(jg")j, P 0

for some A, & 0. The arguments used may be extended to
show that (2) also holds for 0~ IargPI & n/2. It is also
known that h(P) O(P' ) as P

In what follows, it is more convenient to use z -P
and write o(z) -h(P), e(z) E(P). The properties stat-
ed lead to the relation

e(z) - . ~" o(z')(z' —z) 'dz', z $1(n), (3)
2m

monic oscillator with Hamiltonian H(P) p +x +Px,
—00 & x & ~. For real P & 0, we let E(P) be the lowest
bound-state energy. The coefficients in the series (1) are
easy to calculate to high order from Rayleigh-Schrodin-
ger perturbation theory. It has been shown4 that E(P)
may be continued analytically along a path p ~ p~ e'e,
0~ 8~ tr, and we can interpret E ( —

~ P ( ), a complex
number, as the energy of a resonance in the potential
x —IPIx . E(IJ) may be continued further into the
third quadrant, but E(P) has a set of branch points in

that quadrant that approach P 0 from the direction of
the negative imaginary axis. Similarly, E(P) may be
continued along the same path reflected in the real axis.
The result is another value of E(—~PI ) which will be
the complex conjugate of the previous one. We denote
the two continuations of E(P) in the neighborhood of the
negative real axis by E t(P) and Ez(P), and set
4(P) Et(P) —E2(P), so that d (P) is analytic in

ImP & 0 except for the branch points referred to above.
For real P & 0 it has been shown5 that

(2)

where I (a) jz re", 0~ r & ~j. This representation
can be of use in calculating the bound-state energy
e( I z I ), but we illustrate our method on the resonance
case. Because of the analyticity of cs(z), we can change
I (tt) in (3) to I (tt+a), a & 0, provided that a is small
enough that no branch point of o(z) lies in the sector be-
tween I (n) and I (tt+a). Thus, for zo real negative we
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s(zo) - to(z') p(z')(z' —zo) 'dz',
2gj ~ r(a+a)

where we have written ro(z) Ie t l(1+ lz I) ~ and
o(z) to(z)p(z), z 6 I (tr+a). This will give the reso-
nance energy E~(zo ' ) s(zo). In view of the properties
stated above,

„«, , It (z') I'
I d. 'I -C & (5)

To perform the rational approximation of s(zo), we
choose, as described below, a polynomial of degree n,
p(z), and calculate q(z), another polynomial of degree n,

by

q(z) p(z)s(z)+O(z '), z

We approximate s(z) by q(z)/p(z), and it may be
shown2 that

FIG. 1. Plot showing estimates of s( —1) corresponding to
n 42-100, with a q/4. Successive points are joined by
straight lines and the exact result is marked by a cross.

b~(zo) —=s(zo) q (zo)/p (zo) . to(z') p(z')p (z') (zo —z') ' dz'.
2tap(zo) "«+ &

By the Schwarz inequality

lb. ( o)I', ( ')'I ' —
I 'Ip( ') I'Id 'I.—

4 p(„) - «*+.&

The information which we are using is as follows: (i) analyticity of s(z) in C(I (tr+a); (ii) the coefficients

ao, . . . , a„; and (iii) the fact that p(z) satisfies (5). Without any further information, the best choice to use for p(z) in

this approximation scheme is the unique polynomial of degree n which minimizes

&.(zo)- Ip(zo) I '„„,, to(z')'lz' zol —'Ip(z') I'ldz'I. (6)

It can be shown6 that

lim [n ' lnK„(zo)1 —8(3 '
I zo I

cosa)'~ sin(a/2),
N~ oo

so that, with the above choice of p(z),
'"» I b.(zo) I 1 ~ —4(e '

I zo I cosa) '"sin(a/2) (7)

and, from what we known, p(z) could be such that equal-
ity holds in (7).

Now each at, is a linear functional of p(z), as is s(zo)
given by (4), and the approximation q(zo)/p(zo) is
linear in ao, . . . , a„, given the above information. There
is a result in approximation theory7 which states that,
in these circumstances, no nonlinear algorithm is better
than the best linear algorithm. This theorem suggests
that there may be no point in using nonlinear approxima-
tions such as Borel-Pade, especially in view of the fact
that no rigorous error bound is available in these cases.
It must be stressed that for the actual p(z) needed here,
the error of a particular nonlinear algorithm could be less
than the error of our method.

We have applied this method, modified slightly for
convenience by replacing I

z' —zo I in (6) by (1
+ Iz'I) z, which should not affect (7), to the case
zo —1. The results for the choice a x/4 are shown in

Fig. 1. The estimates of s( —1) appear to be converging
to the correct value of 0.74775 —i0.60998, calculated by
a variational method. This suggests that no branch point
of cr(z) lies in the sector between I (tr) and I (x+a).

It is to be expected that if more information abouts(z)
were to be used a better result would be found. Thus, if
we set z -t', rt(t)=s(z), and apply the method to rt(t)
using a contour I (P) UI ( —P), with n/2 & P & 3z/4, we
shall be incorporating the knowledge thats(z) is analytic
on more than one sheet of the z plane. An asymptotic
analysis for the corresponding polynomials, ' indeed,
gives a smaller bound than (7) for large n. We have an
asymptotically better method for calculating the reso-
nance energy (t pure imaginary) and also a method for
the bound state that is better than the Pade method. To
illustrate this point we compare in Table I the results of
calculating E(l ) s(1) rt(1) with diagonal Pade ap-
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3
7

ll
15
19
23
27
31
35

0.12
0.19x 10 '

0.43x10 '
0.12x10 '
0.41x10 '
0.15x 10
0.62x10 4

0.27x10 '
0.12x10 4

0.19x10-'
0.45 x 10
0.38x10 '

—0.12x 10-5
0.66 x 10
0.16x 10
0.17x10 '
0.80x10 '
0.22x10 '

proximants" and rational approximation of ri(t) with
denominator p(t) chosen to minimize

- Ip(1) I '„.. . , ]exp(+t') f /p(t) f' /dt f

with P 5tr/8. Approximants which use the same num-

ber of coefficients ak are compared. The correct value
E(1) 1.3923516415 has been calculated by Biswas et
at 12

We note that the Pade method apparently can be im-

proved. '3 If the information that has gone implicitly into
this improvement could be incorporated into our method,
then presumably it also could be made better.

There are other problems, such as the high-energy ex-
pansion for a disordered medium, which have a mathe-
matical formulation similar to that described here, and

TABLE I. Errors in calculation of E(1) using diagonal Pade
approximants and rational approximation to rt(t).

Number of coefficients Error in diagonal Error in method

ak used Pade approximant of text

this method of rational approximation could be appropri-
ate.
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