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The promise of the inflationary-Universe scenario is to free the present state of the Universe
from extreme dependence upon initial data. Paradoxically, inflation is usually analyzed in the con-
text of the homogeneous and isotropic Robertson-Walker cosmological models. %e sho~ that all
but a small subset of the homogeneous models undergo inflation. Any initial anisotropy is so
strongly damped that if sufficient inflation occurs to solve the flatness and horizon problems the
Universe today would still be very isotropic.
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The most attractive feature of the inflationary-
Universe scenario' is that it offers the possibility of
freeing the present state of the Universe, in regions as
large as our present Hubble volume (8 ' = 102s cm),
from extreme sensitivity to the initial state of the
Universe. Since it is very unlikely that we will ever be
privy to the initial data for the Universe, this is indeed
a very attractive attribute of inflation (for an alterna-
tive point of view, see Hartle and Hawking ). This ex-
treme reliance upon initial data was emphasized by
Collins and Hawking, 3 who demonstrated that without
inflation the set of initial data which evolved into a
model universe which resembles ours at the current
epoch is of measure zero. While inflation holds the
potential to free us from the initial data, for simplicity
it is almost always analyzed within the context of an
isotropic and homogeneous Robertson-Walker (RW)
cosmological model. A key issue confronting inflation
then is which subset of initial data for Einstein's equa-
tions undergo sufficient inflation to evolve to a model
universe with large regions which resemble our
present Hubble volume. Clearly not all the initial data
do. A trivial counterexample is a very closed RW
model which recollapses before it can inflate.

Here we consider all of the homogeneous models,
the nine Bianchi classes, and the Kantowski-Sachs cos-
mology. (The Kantowski-Sachs cosmology is the ex-
ceptional case to the Bianchi classification of the
homogeneous models; the topology of its spatial sec-
tions is S2X R.) Wald" has shown that with the excep-
tion of a subset of Bianchi-IX models and, of the
Kantowski-Sachs models, those which have very large,
positive spatial curvature, all the homogeneous models
with positive cosmological constant asymptotically
evolve to de Sitter space. Of course, in inflationary-
Universe models, the Universe does not in the
strictest sense have a true cosmological term. Rather
there is a vacuum energy density which depends upon
an order parameter ( usually the expectation value of
some scalar field). So long as the scalar field is dis-

placed from the zero-energy minimum of its potential
and is slowly evolving, the vacuum energy is approxi-
mately constant and behaves like a cosmological term.
The issue then is a dynamical one; does the Universe
evolve into a de Sitter state before the scalar field
reaches the minimum of its potential?

Steigman and Turner5 have shown that anisotropy
does not hasten the evolution of the scalar field, and
so models which inflate in the absence of anisotropy
also inflate in the presence of anisotropy, regardless of
the amount of anisotropy present. Recently several
authorss have raised the possibility that, even though
inflation does occur in anisotropic models, if the
Universe were intitally sufficiently anisotropic, grow-
ing modes of anisotropy might restore the anisotropy
by the present epoch, thereby defeating the best ef-
forts of inflation. This is the issue we will address in
this Letter. 7

We will show that while some homogeneous models
will indeed again become very anisotropic, inflation
postpones this event to an exponentially distant time
in the future and models which inflate sufficiently to
solve the horizon and flatness problems will today still
be very isotropic. In this regard it has been known for
a long while that inflation does not permanently render
the Universe smooth within our Hubble volume;
several authors have shown that if there were curva-
ture perturbations (i.e., scalar density perturbations)
present before inflation took place, then these pertur-
bations would enter the horizon with the same ampli-
tude as they would have in the absence of inflation,
but at a much later time. s 9 A finite epoch of inflation
does not smooth the Universe globally; rather it
creates large smooth patches, sufficiently large to en-
compass our Hubble volume at this late date in the
history of the Universe.

Bianchi inflation. For a detailed d—iscussion of the
Bianchi classification and models we refer the interest-
ed reader to Refs. 10-12 and for the Kantowski-Sachs
cosmology to Ref. 13. We denote the scale factors of
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In these space-times the equation of motion for a
homogeneous scalar field @ with Lagrangean density
L = —,'@2—V(@) is

j+3Hy+ V'=0,

where the overdot denotes a time derivative and the
prime a derivative with respect to $, and we use units
where h = c = 8m G =1.

For all the Bianchi models except IV and VII„the
equations for the evolution of the scale factors can be
written as~0 ~~ ~~

hi+3Hhi= Fj+ (p —p)//2,

V/ V = Fi + F2+ F3+ 3 (p —p)/2,

(3)

(4)

where the F, depend upon the scale factors X,. For our
purposes the crucial feature of the F, is the fact that
they decrease at least as fast as V z'3. That is the only
property of the F; that we will use. Physically, that
corresponds to an effective energy density associated
with anisotropy which decreases at least as fast as
V 2t3 (or R 2), which means that the fastest-growing
mode of anisotropy grows at the same rate as a curva-
ture perturbation in a RW model. For Bianchi-I
models the F, =O; for Bianchi II, VI, VII, VIII, and IX
the F&~ V 2t3. For the Kantowski-Sachs cosmology
there are only two independent scale factors: the ra-
dius of the two-sphere (—= Y= Z) and the scale factor
of the flat dimension (—= X), and F„=O, F~=F,
= —Y 2.

For the Bianchi-IV and -VII& models the equations
cannot be put into diagonal form; there is an additional
term on the right-hand side of Eq. (3), G, (h, ,X,) (see
Refs. 11 and 12). The G, decreases at least as fast as
R (n «1). For simplicity we will not specifically
consider these terms, as they do not qualitatively alter
our analysis.

Except for the F, terms in Eqs. (3) and (4), these
equations are identical to those for the isotropic
Robertson-Walker cosmology (where X= Y=Z, and
hi= H), and in the presence of stress-energy (with

the principal axes of the Universe by X,, i =1-3, the
expansion rates in these directions by h, =—X,/X, the
proper volume of a unit comoving volume element by
V —= Xi X2X3, and the mean expansion rate by
H = R—/R =——,

'
V/ V = ( h, + h, + h, )/3, where R = V't3

is the mean scale factor of the Universe. We will as-
sume that the stress-energy in the Universe is
described by a perfect, isotropic, and homogeneous
fluid with energy density p and isotropic pressure
p = yp. Such a fluid with y =0 corresponds to nonrel-
ativistic matter, with y = —, to a relativistic gas in ther-
mal equilibrium, and with y= —1 to vacuum energy.
It follows from the conservation of stress-energy that

y- (1+y)

p&p) the different expansion rates rapidly become
equal if the F, =O. For this reason we will use the F,
to quantify the degree of anisotropy. To this end we
will denote the typical size of the F; as F and will as-
sume that F~ V 23, taking into account the most
slowly decaying mode of anisotropy. We will denote
the relative size of the anisotropy by

p-=X'/3= V(y) =M,

V/ V=X',

V~ exp(Xt),

hi + X hi = F+ X2/3,

(6a)

(6b)

(6c)

(6d)

(6e)

~here as usual ~e have ignored the kinetic term
( —,'P ) as it is much smaller than V(@) during infla-
tion. Taking F to vary as V 2t3~exp( —2Xt/3) and

We will also assume that initially $ is displaced from
the minimum of its potential (e.g. , as a result of initial
conditions or thermal effects), and that, in the absence
of anisotropy during the time it takes $ to evolve to
the minimum of its potential, the scale factor of the
Universe grows by a factor of exp(N), i.e. , the
Universe inflates by N e.folds. We will not need to
know the detailed evolution of $ here. We should
emphasize that we are not addressing the question of
the initial value of P; we assume, as is done in the
usual RW inflationary analysis, that $ is not initially at
the zero-energy minimum of its potential. Indeed,
one of the key unresolved issues confronting inflation
is what determines the initial value of @. For all viable
models of inflation the scalar field @ is so weakly cou-
pled that thermal effects do not serve to determine its
value (see, e.g. , Turner, Ref. 1).

For all but the subset of very highly positively
curved Bianchi-IX models and Kantowski-Sachs mod-
els, the anisotropy increases the mean expansion,
thereby increasing the 3H@ friction term in Eq. (2).
For all but the aforementioned models the work of
Wald" and Steigman and Turners implies that the
Universe will become dominated by vacuum energy
(and become de Sitter type) before $ evolves appreci-
ably from its initial value. Once the Universe is de
Sitter type it will take $ the usual N Hubble times to
evolve to the minimum of its potential, during which
time the mean scale factor grows by a factor of
exp(N).

Wald's result implies that asymptotically e 0; for
our purposes we will denote the beginning of inflation
to be the time when e is sufficiently small, say
e~ = 0.1, so that F can be treated as a perturbation in
Eqs. (3) and (4). During inflation we have
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solving for h, and X, to order ~ we obtain

h, = [1+3mb exp( —2x t/3) )x/3+ const x exp( —x t),
X,~ exp [x t/3 —1.5~b exp( —2x t/3) —const x exp( —x t)/x 1, (Zb)

where "const" is an irrelevant integration constant.
As the Universe inflates, all the h, approach the usu-

al RW inflationary value of X/3 exponentially fast, and
F decreases as exp( —2X/3t). Steigman and Turner5
have shown that inflation will last at least the usual
number of e-folds, and so at the end of inflation

e, ~ min[eh, e, ] exp( —2N), (8)
since p remains constant during inflation and F de-
creases at least as fast as V 2 3. Note that the value of
e, is independent of the initial value of e =~„provi d-

ed that the initial value was larger than about 0.1 or so.
If e, ~ 0.1, then a, depends upon ~, and is even small-
er, ~, = e, exp( —2N). (Note that the exponentially
rapid approach to de Sitter type also justifies the fact
that the dynamics of inflation is usually analyzed in the
context of a RW background).

V/ V= 3(1—y) p/2 ~ V t / '+ "i

I Given e at the end of inflation, how does the aniso-
tropy of the Universe then evolve? To answer this we
shall assume that after inflation p=yp with y~ —1
and that the Universe goes through three subsequent
phases: a postinflation phase where the energy density
is dominated by coherent oscillations of the @ field
during which y =0; a radiation-dominated phase which
begins when the $ particles decay, thereby reheating
the Universe (to a temperature T„„);and finally the
current matter-dominated phase which begins when
the Universe has a temperature of about 10 eV and is
about 10'0 sec old.

After inflation ~ ((1 so that the Universe is very
nearly RW, and the F, can be treated as small pertur-
bations. If we work to lowest order in e, and take the

I Ft~ V &3, it is simple to solve Eqs. (3) and (4):

h, +2h, t-'/(i+y) =F+(1 y)p/2—
hi = [2t '/(3+3y) ] (I+ [6eo/(5+3y) ) (t/to) '+'»t '+'~'),

(i0)

where the subscript 0 refers to the value of the quanti-
ty at the reference time t= to. From Eq. (11) it is
clear that ~ grows as t (or R2) during a radiation-

dominated epoch and t 3 (or R) during a matter-
dominated epoch. This is just as one would expect
since the fastest-growing mode of anisotropy varies as
R 2, while p„~~R 4 and p,«„~R

We are now ready to compute the present ansitoropy
in the expansion of the Universe. At the end of infla-
tion e is of order exp( —2N) or e, exp( —2N) if the
Universe was never dominated by anisotropy. While
the energy density of the Universe is dominated by
coherent oscillations, from p=Al' to p—- TRH, e
grows as R or by a factor or M /3/Tq4g. During the
subsequent radiation-dominated phase, from
T= TaH —10 eV, ~ grows as R, or by a factor of
1036Tip, where TRH= Tiox (10'0 GeV). Finally, in
the current matter-dominated phase which began when
the Universe had a temperature of about 10 eV, e has
grown by a factor of about 30000. Bringing all of
these factors together we find that the present level of

t „=min[1, e, ] 3 2Mi4 Tio' exp(3N —159)10'0 yr.

anisotropy is at most

e„d,„-—min[1, ~, ] exp( —2N) 10~Mi~4t3 Ti2(3. (12)
The isotropy of the microwave background
(5 T/ T~ 10 ~) constrains ~,~„to be less about 10
sufficient inflation to guarantee this level of isotropy
implies that

N ~ 57.5+ ln(Mi24 Tip)/3, (i3)
which is precisely the amount of inflation required to
solve the horizon and flatness problems (see Turner,
in Ref. 1). This is not surprising as the fastest-growing
mode of anisotropy varies as R 2, just as the curva-
ture of the Universe does. [For Bianchi IV and VIIb
the effect of the G, terms modifies Eq. (13):

N ~ 243/n —64+ (4/n ——', ) ln(Miq) + ln( Tio)/3. )

If there are growing modes of anisotropy, then the
Universe will ultimately become very anisotropic
again. If we assume that the Universe continues to be
matter dominated and recall that e~ R~ t t3 when the
Universe is matter dominated, it follows that ~ will be
of order unity when t = t,„;„where

(i4)
Because of the interrelation between the isotropy and flatness problems, at about the same time, one would expect
the Universe to become curvature dominated, i.e., 0 to deviate significantly from unity.

&ummatY. —We have shown that all the homogeneous models, except for the subset of Bianchi-IX and
Kantowski-Sachs models which recollapse before they inflate, will undergo inflation and in the process become
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highly isotropic. As in the RW inflationary model of
inflation, we have assumed that the scalar field respon-
sible for inflation is initially displaced from the
minimum of its potential. Regardless of the initial lev-
el of anisotropy, all models will be isotropic today pro-
vided that sufficient inflation occurred to solve the
flatness and horizon problems. In the exponentially
distant future the Universe may again become aniso-
tropic provided that initially there were growing modes
of anisotropy. As with the horizon and flatness prob-
lems, inflation merely postpones the inevitable.

Now that the homogeneous models seem to be in
hand, the more difficult case of inhomogeneous
models must be addressed. In this regard, it has al-
ready been shown that small inhomogeneities are no
obstacle to inflation, s 9 and recently the analogue of
Wald's result4 for inhomogeneous models has been
proven. ""

We gratefully acknowledge conversations with
L. Jensen and J. Stein-Shabes, who have done similar
independent work, '7 and J. Barrow's critical reading of
the manuscript. This research was supported by the
U. S. National Aeronautics and Space Administration
(at Fermilab), the U.S. Department of Energy (at Chi-
cago and at Fermilab), and by an Alfred P. Sloan
Foundation Fellowship for one of us (M.S.T.).

iA. Guth, Phys. Rev. D 23, 347 (1981); A. Linde, Phys.
Lett. 10$B, 389 (1982); A. Albrecht and P. J. Steinhardt,
Phys. Rev. Lett. 4$, 1220 (1982). For a recent review of in-
flation, see M. S. Turner, in Proceedings of the Cargese School
on Fundamenta/ Physics and Cosmology, edited by J. Audouze
and J. Tran Thanh Van (Editions Frontieres, Gif-sur-
Yvette, France, 1985).

2J. Hartle and S. W. Hawking have advocated the
quantum-cosmology approach to address the question of the
initial state of the Universe and with certain assumptions
about allowed spacetimes they can specify the initial state by
calculating the wave function of the Universe; see J. Hartle
and S. W. Hawking, Phys. Rev. D 2$, 2960 (1983). We also
refer the interested reader to the recent revie~ of quantum
cosmology by A. Vilenkin, in Proceedings of the Thessaloniki
Conference on Particles and Cosmology, Thessaloniki, Greece,
June l985, edited by G. Lazarides and Q. Shafi (North-
Holland, Amsterdam, 1986).

3C. B. Collins and S. %. Hawking, Astrophys. J. 180, 317
(1973).

4R. M. Waid, Phys. Rev. D 28, 2118 (1983); Weber has

explicitly generalized %aid's result to the Kantowski-Sachs
models [E. Weber, J. Math. Phys. (N.Y.) 25, 3279 (1984)].

5G. Steigman and M. S. Turner, Phys. Lett. 1288, 295
(1983).

6Among others, this concern has been voiced by J. D.
Barrow and D. H. Sonoda, Phys. Rep. 139, I (1986), foot-
note on p. 45; and J. Hartle, University of California, Santa
Barbara, Institute for Theoretical Physics, Report No. NSF-
ITP-86-80, 1986 (to be published).

Some aspects of this issue have also been addressed by
Q. Grsin, Phys. Rev. D 32, 2522 (1985); B. C. Paul, D. P.
Datta, and S. Mukherjee, Mod. Phys. Lett. Al, 149 (1986);
I. Moss and V. Sahni, Phys. Lett. B (to be published).

SJ. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys.
Rev. D 2$, 679 (1983).

9J. A. Frieman and M. S. Turner, Phys. Rev. D 30, 265
(1984); R. Brandenberger and R. Kahn, Phys. Rev. D 29,
2172 (1983).

06. F. R. Ellis and M. A. H. MacCallum, Commun. Math.
Phys. 12, 108 (1969); M. P. Ryan and L. C. Shepley, Homo
geneous, Relativistic Cosmologies (Princeton Univ. Press,
Princeton, 1975).

&&H.-H. von Borzeskowski and V. Mueller, Ann. Phys.
(Leipzig) 7, 361 (1978).

~2See, e.g. , A. Harvey and D. Tsoubelis, Phys. Rev. 0 15,
2734 (1977). It is interesting to note that these authors have
constructed a rather general Bianchi-IV solution which does
not permit a cosmological term. If this is a feature generic to
Bianchi IV, then it should imply that, if nonzero vacuum en-
ergy is a part of the microphysics of our Universe, Bianchi-
IV models are of no cosmological relevance to us.

&3A. S. Kompaneets and A. S. Chernov, Zh. Eksp. Teor.
Fiz. 47, 1939 (1964) [Sov. Phys. JETP 20, 1303 (1965)];
R. Kantowski and R. K. Sachs, J. Math. Phys. (N.Y.) 18,
2116 (1979); C. Collins, J. Math. Phys. (N.Y.) 18, 2116
(1979).

t4Strictly speaking, Eqs. (3) and (4) are only valid in the
case that the flow of the stress-energy is orthogonal to the
homogeneous hypersurfaces. Before and during inflation
the only relevant stress-energy present is that of the scalar
field, whose flow is necessarily orthogonal to the homogene-
ous hypersurfaces, and after inflation we tacitly make the
seemingly reasonable assumption that the radiation stress-
energy produced by the decay of the vacuum energy during
reheating has a four-velocity which is orthogonal to the
homogeneous hypersurface. Thus Eris. (3) and (4) are ap-
plicable throughout.

&5A. A. Starobinskii, Piz'ma Zh. Eksp. Teor. Fiz. 37, 55
(1983) [JETP Lett. 37, 66 (1983)).

tsL. Jensen and J. Stein-Schabes (to be published).
~7L. Jensen and J. Stein-Schabes, Phys. Rev. D 34, 931

(1986).


