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The question of whether scattering by the almost-periodic lattice potentials of recently discovered
metallic quasicrystals is able to explain the recently observed short mean free paths (about 1 A, ) in
these materials is discussed. It is sho~n that scattering by a three-dimensional, almost-periodic po-
tential cannot account for such resistivities, but a model which includes structural defects in the
three-dimensional Penrose tiling and large scattering of electrons due to s-d resonant scattering can
account for the experimental observations.

PACS numbers: '71.50.+t, 72.15.Cz, 72.20.—i

Recently, rapidly cooled alloys of aluminum and
manganese have been found which exhibit an electron
diffraction pattern consistent with icosahedral point-
group symmetry. ' As such point-group symmetry is
not permitted in conventional crystallography, these
compounds are believed to be "quasicrystals, " which
are almost periodic rather than periodic. z Almost-
periodic substances are predicted to be able to exhibit
exotic band structure, with gaps appearing in the
neighborhood of every energy. 3

Although electron and x-ray diffraction-peak widths
show that quasicrystals are coherent over distances of
the order of hundreds of angstroms, '~ the measured
resistivities for quasicrystals are of the order of 150
(u, Qam, implying a mean free path of only a few
angstroms. 5 These results would on the surface appear
to imply that the almost-periodic nature of the ar-
rangement of the ions might be responsible for the ob-
served short mean free paths. The present Letter will

explore whether scattering of electrons by the three-

dimensional almost-periodic lattice potential in a
quasicrystal is able to explain the observed high resis-
tivities.

It is shown in this article that, surprisingly, the
scattering of electrons by the potential due to the
almost-periodic lattice proposed for the quasicrystals
does not contribute any resistivity to any order in time
dependent perturbation theory, but that the observed
resistivity can be accounted for by defects in the per-
fect Penrose tiling. Althouth there have recently been
studies of the electronic structure of certain models for
the quasicrystals, 6 these treatments do not address
themselves to the question of the effects of almost-
periodicity on experimentally observed transport prop-
erties, which is addressed here.

Since aluminum and manganese are both relatively
good metals at low temperatures, it might be reason-
able to assume that weak pseudopotential theory and
the Ziman method7 can be used. For the quasicrystals,
the scattering rate is given by the standard formulas

'= (2m/il') X )u(G) ( )S(G) ) sin [(it/2m)(k —~k —G)2) t]//t[(t /2m)(k —(k —6(2)],

where T is the scattering time, k is the electron wave
vector, and G are the quasicrystal reciprocal lattice vec-
tors, ~ 9 which are linear combinations with integer
coefficients of the six vectors given by GJ= (2~/
a)(1+~2) ti2g&, where (g ] is ((r, 0, 1), (1, —r, 0),
(r, 0, —1)(l,r, 0), (O, l, ri, (0, —l, r) ), where a ie
the length of a rhombohedral tile edge, and 7 is the
"golden mean" [i.e., r = (J5+ I)/2]. Here, t)(6) is
the Fourier transform of the atomic potential and
S(G) is the structure factor of the quasicrystal. s I
have omitted the factor 1 cosH in Z—iman's formula
(where H is the angle between k —G and k) for simpli-
city. The time r is taken to infinity after the summa-
tion over G is performed. We will see that T ' ap-
proaches zero for the almost-periodic structure as tap-
proaches infinity.

Elser calculated the structure factor for the quasi-
crystal by representing it as a projection of a simple hy-

percubic lattice in six dimensions into the physical
three-dimensional hyperplane. 9 He finds that S(G) is
proportional to sums of products S&StS with unequal
values of ij,I where S&

= sinz&/zj, z&
= —,

' 6) aP, where

ap represents a projection of a simple hypercubic
primitive lattice vector into the hyperplane perpendic-
ular to the physical hyperplane and G~ is the projec-
tion of its reciprocal lattice vector in the hyperplane
perpendicular to the physical one. The projection into
the physical hyperplane gives 6 [in Eq. (1)]. Then, if

6= X~ nJGJ,

~e have

z = —,'6 .a = —' &.nG' a = —' ~&,. n, P, (2)

~here P&&~ is the projection operator onto the hyper-
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plane perpendicular to the physical one, discussed by
Elser. a As the limit of large t is considered, only
values of G in a small range around a value of G for
which Ik —G~ is very nearly equal to [k~ can contri-
bute. Then the values of 6 which contribute most
strongly to Eq. (1) are the projections of points in a
narrow strip perpendicular to the physical hyperplane,
whose width corresponds to this region, in the recipro-
cal lattice of the six-dimensional simple hypercubic lat-
tice.9 This is illustrated by a simple one-dimensional
example in Fig. 1.9 We can see that although there ex-
ists a continuum of G values which contribute to Eq.
(1), most correspond to very large values of Gi (i.e.,
they are far from the physical hyperplane) in the limit
as the strip width approaches zero (i.e., as t ~).
Since Elser's structure factor becomes small when Gi
becomes large, the structure factor for most of these
points will be negligibly small, and hence, as we shall
see, will make a contribution to Eq. (1) which ap-
proaches zero as t approaches infinity. This is the
reason that T is zero for the almost-periodic lattice.
In more detail, if we could find a value of 6, call it Go,
which is a combination of the six vectors [6&] with
small integer coefficients, such that ~k —60( is arbi-
trarily close to ~k~, the G values which dominate Eq.
(1) would be those with 6=60+56, where
LEG= (2n ja) [r2+ I] ' 2 times (F,, 7 —F.. ., O, O),
(O,FI,r —Ft, +t, O), or (O, Q, Fj,~ —

F~,+i), where {FI]
are the Fibonacci numbers, given by F&= FI i+ FI
Fi =1, F2=2. For large I, F&r FI+i is ap—proximately
proportional to (Fi '), a small number (this is actually
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FIG. 1. The calculation of the electron scattering rate for
electrons in a one-dimensional almost-periodic lattice pro-
jected from a two-dimensional simple square lattice. The re-
ciprocal lattice is calculated by projecting from the square-
lattice reciprocal lattice shown onto the G[~ axis. The strip
between the dotted lines illustrates the range of 6 values
which contribute to Eq. (1) for a finite value of t. The pro-
jection of each reciprocal lattice point that falls inside this
strip onto the G[[ axis gives the allowed values of 0 which
contribute to Eq. (1).

true for ~ any irrational number and F&+i and FI any
two integers such that FI+ t/F& is a rational approxima-
tion to ~). The vector b,G is easily shown to be a re-
ciprocal lattice vector for the quasicrystal. These
values of b, G give the largest contribution to S(G)
since they give terms in Swhich fall off only as Fi
whereas other small values of b,G would make S fall
off faster. For very small values of b,G, it is easily
shown by use of Elser's results9 that the dominant part
of S(6) is proportional to Fi ' for the large I values,
which occur when we have a small value b,G
(remember that small 56 corresponds to large values
of Gi ). This is easily shown by use of Elser's expres-
sions for the projection operator and the structure fac-
tor, along with Eq. (2). [Again, this behavior of S(G)
is true for any projection angle of the physical hyper-
space and hence any value of r, as stated above. ] This
is true for all values of Go [most 60's make S(G)
very small to start with]. Then, I/Tin Eq. (1) is pro-
portional to

F,

where I;„is the minimum value of I for which the en-
ergy difference in the argument of the sine is less than
If/t. [The factor F, . comes from the fact that the

average value of the factor sin2[ ] r/t[ ]2 in Eq. (1) in
the range of G values for which it is reasonably large is
proportional to t, which is proportional to FI since

IEG~ is proportional to FI'.j Thus, sin, ce the energy

difference is nearly proportional to F~ ', as stated ear-
lier, I;„approaches infinity as t approaches infinity
and hence T ' given by Eq. (1) approaches zero, i.e.,
the almost-periodic potential leads to no damping of
the states, and hence, according to Ziman's work, will
result in no resistivity. [Each term in Eq. (1) falls off
at least that quickly; most fall off more rapidly as
t ~.] Although for some special almost-periodic
potentials in one dimension, the spectrum will be com-
pletely fragmented by gaps'0 (making it highly likely
that the Fermi level falls in a gap), in three dimen-
sions there must be some bands which lie at the Fermi
level. Including the difference between aluminum and
manganese pseudopotentials would not change the
results qualitatively.

These results can be generalized to arbitrary order in
time-dependent perturbation theory by replacing
u (6)$(G) by the Tmatrix for the quasicrystal, which
can be expressed as a perturbation-theory expansion in
u. Since 56=Q, n,G, , if the n, 's are divided among
the matrix elements in a given order in perturbation
theory (i.e., each term is proportional to (k~u~k
+Gi) (k+62~u~k+63). . . ), the T matrix is pro-
portional to gjmj ' or smaller where [mj] are in-
tegers such that XJ mj = F&, since each S(6) associat-
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ed with each matrix element is proportional to the re-
ciprocal of one of these integers or smaller. Thus,
each order in perturbation theory will approach zero
faster than the zeroth-order term as Iapproaches infin-
ity. Hence, the often used procedure of replacing the
pseudopotential in the Ziman formula by a T matrix"
cannot account for the observed resistivity.

The manganese atoms, however, could be strong
scatterers, for which perturbation theory is not valid,
for electrons at the Fermi surface because of resonant
scattering by the 3d states, as occurs in liquid metals. "
Consider, as a model for this, electrons propagating
through an almost-periodic array of hard spheres
(representing the manganese atoms). Certainly for
electron wavelengths long compared to the sphere ra-
dius, the method of Lax may be applied. '~ The result-
ing decay distance for the wave is the reciprocal of the
product of the total scattering cross section and the
number of scatterers per unit volume. Lax's argu-
ments for a periodic crystal can be taken over for the
almost-periodic case, if for the structure factor occur-
ring in the expression for the total scattering cross sec-
tion we use the one found by Elser. 9 Whereas for the
periodic case the cross section is zero for all wave vec-
tors except those which satisfy the Bragg condition, for
the almost-periodic case there is almost a continuum
of k values satisfying the Bragg condition. The discus-
sion after Eq. (2), however, shows that the structure
factor is negligibly small for most elastic-scattering
processes. This implies that the wave function will not
decay in the present three-dimensional almost-periodic
potential, despite the fact that the potential is strong.
Thus, the occurrence of high resistivity can only be ac-
counted for by including defects in the almost-periodic
quasicrystal structure. For example, Elser proposed
the existence of structural defects, which introduce a

Debye-Wailer-type factor but do not preclude the oc-
currence of a well-defined diffraction pattern. '3 Hen-
ley suggested that these defects might be responsible
for the observed resistivity. '4

In order to determine the damping of the electron
wave function using Lax's formula we must calculate
the total cross section for incoherent scattering pro-
duced by the defects, which requires a knowledge of
the average of the square of the structure factor over
all defect configurations. This may be found by use of
the method of Zia and Dallas, '5 which shows that the
structure factor of quasicrystal is given by

U(r ) = U(g, g) = g 5 (r6 —R&6), (4)

where r6 is the six-dimensional position vector and

(R& I are the location of the lattice points in a six-
dimensional simple hypercubic lattice and g and g are
the three-vectors labeling points in the physical three-
dimensional hyperplane and the hyperplane perpendic-
ular to it, respectively. R(p) is the Fourier transform
of the function R(q) which is unity if g falls within
the triacontrahedron cell containing the coordinates in

the hyperplane perpendicular to the physical hyper-
plane of those points in the six-dimensional lattice
which when projected into the physical hyperplane
give the quasicrystal lattice, and zero otherwise. To
account for the structural defects, we add a small six-
dimensional random variable uj to RJ, which has
components only in the hyperplane perpendicular to
the physical one. The average of the square of Eq. (3)
is easily shown to be proportional to

J d p R( —p) U(k, p).

Here U(k, p) is the spatial Fourier transform of the
function U(f', g) defined by

J d p d p'X exp[ik ~ (R —R )]R(—p)R( —p')(e'i' ") (e 'i'' ")+„'d lpR( —p) l [1—l(e'i'")
l ], (5)

where k is the six-dimensional wave vector corresponding to the three-dimensional vectors k and p in Eq. (3),
respectively, and the angular brackets denote an average over the u's, with distribution function P(u). The first
term on the right-hand side of Eq. (5) gives the Bragg scattering, reduced by an effective Debye-Wailer factor
(ei' ) and the second term gives the incoherent scattering. For example, if P(u) is a Gaussian function
(a3/n 3~~)exp( —alul~), where a is a parameter, the second term in Eq. (9) is easily found to be proportional to

I —[a'/(2n)' ']Bi ', „d'r „d'r'exp( —,'a'lr' —rl'), (6)

where 0, is the volume of the triacontrahedron and
the subscript 0, on the integral signifies an integral density of defects (i.e., number per lattice site). This
over this volume. If a ' is small compared to a mean is easily seen in the one-dimensional example. 9 Then,
radius of the triacontrahedron, Eq. (6) gives zero ex- if (uz)'~~ is equal to —, of the mean triacontrahedron
cept for r ' in a shell of thickness a ' around the radius, the incoherent part of the mean square struc-
boundary of the triacontrahedron. Thus, Eq. (6) gives ture factor is =0.6 but the low-order Bragg peaks are
a result 3(l —y)(uz)'~~/R, where y is a number of or- only reduced by about 50% by the effective Debye-
der unity and R is the mean radius of the triacon- Wailer factor.
trahedron. The factor (u )'~~/R is of the order of the Thus, we see that the contribution to the mean-
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square structure factor for incoherent scattering can be
of the order of the Bragg-scattering part. Since the
total-scattering cross section for a single hard sphere is
4' times the square of the sphere radius, s we must
conclude on the basis of Lax's argument that the in-
coherent scattering could lead to a total-scattering
cross section for the quasicrystal comparable to the
square of this radius, and hence to a decay distance of
the wave function not much larger than the radius of a
manganese atomic core. This could explain the fact
that the quasicrystals seem to have mean free paths of
the order of an angstrom, like transition-metal metallic
glasses and liquid metals. It would also imply that if
quasicrystals could be made which had fewer defects or
which did not have d states at or near the Fermi level,
their resistivities should be much smaller, and perhaps
interesting electrical properties due to almost-perio-
dicity could be observed in such substances. 3
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