
VOLUME 57, NUMBER 17 PHYSICAL REVIEW LETTERS 27 OCTOBER 1986

Singular Volume Dependence of Transition-Metal Magnetism
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The transition from nonmagnetic to magnetic behavior in transition-metal ferromagnets is stud-
ied by analysis of all possible volume evolutions of the variation of the total energy with magnetic
moment. In contrast to a large body of previous work, magnetic transitions are shown to be neces-
sarily singular, and usually multivalued and discontinuous. Self-consistent spin-polarized energy-
band calculations for bcc nickel, fcc cobalt, bcc vanadium, and fcc iron are presented as examples
supporting and illustrating the general conclusions.
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The presence or absence of magnetism in transition
metals is determined by a competition between intra-
atomic exchange interactions and interatomic electron
motion. Since the interatomic motion depends strong-
ly on the interatomic separation, and because the d
bands are partially filled, transition metals are neces-
sarily magnetic at sufficiently large volumes (low den-
sities) and necessarily nonmagnetic at sufficiently low
volumes (high densities). Thus, a normally magnetic
transition metal, like iron, becomes nonmagnetic
when compressed. Conversely, a normally nonmag-
netic transition metal, like vanadium, becomes mag-
netic when expanded. ' The nature of the transition
from nonmagnetic to magnetic behavior, however,
constitutes a long-standing problem. All previous
results2 indicate that the variation of the magnetic mo-
ment with volume, M( V), is smooth and continuous,
even in the transition region. Here, I present a general
discussion, based on a Landau-type expansion of the
total energy in even powers of the magnetic moment,
that shows that this variation cannot be smooth and
continuous. By examining the simplest possible ways
that a system can undergo a transition from nonmag-
netic to magnetic behavior, I show that M( V) always
exhibits square-root singularities, and that M( V) is
usually multivalued and discontinuous. The general
conclusions are both illustrated and supported by the
results of new and carefully performed energy-band
calculations based on a local-spin-density approxima-
tion. 3 The calculated M( V) curves support the gen-
eral conclusion that, in the transition region, M( V)
must exhibit square-root singularities, and that M( V)
is usually multivalued and discontinuous.

At a given volume, the possible magnetic states of a
system are completely determined by the variation of
the total energy with magnetic moment, E(M). Tran-
sitions from one state to another are determined by
the evolution with volume of these curves. The sim-
plest possible evolution from nonmagnetic to magnetic
behavior is schematically shown in the upper-left panel
of Fig. 1. At sufficiently low volumes (lowermost
curve), E(M) exhibits a minimum at the origin

(M=O). In this case, d2E/dM at M=O is positive
and the system is nonmagnetic (M=O). At suffi-
ciently high volumes (uppermost curve), d2E/dM2 at
the origin is negative, so that the minimum must oc-
cur at finite M (hence the system is magnetic). There-
fore, at some intermediate volume, labeled Vc, the
second derivative must vanish. The system is nonmag-
netic for all volumes less than Vc, and magnetic for all
volumes greater than Vc. Starting at Vc, the
minimum in the E(M) curves moves continuously
away from M=0 with increasing volume. The dashed
curve shows the locus of the minimum as a function of
volume. Note that as Vapproaches Vc from above the
magnetic moment decreases to zero. The M(V)
behavior corresponding to this simplest evolution is
shown in the right-hand portion of the upper panel of
Fig. 1. In this case, M( V) consists of two connected
branches, one describing nonmagnetic and another
describing magnetic behavior.

The volume dependence of the magnetic moment,
M( V), in the immediate vicinity of Vc is most easily
described by a Landau expansion of the energy in even
powers of M with volume-dependent coefficients.
Then

E- E,=~( V)M +p( V)M+. . .,

where Eo is the energy at zero moment. The lower-
most E(M) curve in the upper panel of Fig. 1 (low
volume and nonmagnetic behavior), where d2E/dM'
is positive at M-O, corresponds to positive a and p.
The uppermost E(M) curve (high volume and mag-
netic behavior), where dzE/DM is negative at M =0,
corresponds to negative u and positive p. With trun-
cation of the Landau expansion at M (which requires
a positive p so that M cannot increase without limit),
the minimum-energy requirement is

dE/dM=2a( V)M+4P( V)M3=0.

Therefore, the volume dependence of the moment at
the energy minimum is

Mz = —a ( V)/2P ( V).
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FIG. 1. Schematic representation of the three simplest
types of evolution from nonnlgnetic to magnetic behavior.
The lowermost and uppermost E(M) curves in each left-
hand panel correspond to the limiting nonmagnetic (low
volume) and magnetic (high volume) behaviors. The
dashed curves represent a mapping of the various energy
minima. The top, middle, and bottom panels represent
type-l, type-ll, and type-III transitions, respectively (see
text). The expected M( V) behavior is shown by the right-
hand panels.

Note that ~(V) is a measure of the curvature,
d2E/dM2 at M =0. At V= Vc, the curvature changes
sign. Therefore, n( Vc) =0. In the vicinity of V&,
a( V) is proportional to V—Vc, and the equilibrium
moment for V) Vc becomes

M~ ( V —Ve ) '~'.

Thus, M exhibits a square-root singularity at V= VC
(with dM/ dV= ~), and Vc is a "critical" volume. I
classify this simplest evolution exhibiting only one
singularity, shown in the top panel of Fig. 1, as a
type-I transition.

A more complex behavior occurs if a second mini-
mum develops at finite M In this case, at some inter-
mediate volume, the system exhibits two local E(M)
minima, one at M=0 and another at finite M. At this
volume the system exhibits the metamagnetic
behavior discussed by Wohlfarth and Rhodes4 and by
Shimizu, and can be driven from the nonmagnetic
state to the magnetic state by the overcoming of the
energy barrier between them (i.e., by application of a
magnetic field). This ease is shown in the middle
panel of Fig. l. An immediate implication of the ex-
istence of two minima at this intermediate volume is
the existence of two critical volumes Vc, and

marking the termination of each minimum. For this
type of evolution, the magnetic minimum persists for
all volumes down to Vc, , where the minimum van-

ishes at the finite M, and the curvature becomes zero.
Likewise, the nonmagnetic minimum persists for all
volumes up to Vc,. The corresponding M( V) behav-

ior is shown in the middle-right panel of Fig. 1. The
two branches are now separated, and there is an over-
lapping region where the behavior is discontinuous and
multivalued. Since this case exhibits two singularities,
the evolution is classified as a type-II transition.

In a type-II transition, the appearance of the second
minimum at finite M precludes the onset of a type-I
transition (occurs at a lower volume). However, if the
second minimum forms at a higher volume than the
onset of the type-I transition, the complex evolution
shown in the bottom panel of Fig. 1 occurs. At an in-
termediate volume, the system exhibits two local
E(M) minima, both at finite M. As shown in the fig-
ure, this evolution implies the existence of three criti-
cal volumes. Here the low-volume, nonmagnetic
minimum terminates at a third critical volume labeled
Vc, where it joins with the lower termination of the
low-moment minimum in the same manner as the
type-I transition shown in the top panel. The low-
moment minimum must also terminate at a second
critical volume labeled Ve at a finite M value. Fur-

3

thermore, in this termination, the singularity is ap-
proached from below. The high-moment minimum
terminates at the critical volume labeled Ve; in the
same manner as the type-II transition shown in the
middle panel (the location of all minima are shown by
dashed lines in the figure). The corresponding M( V)
behavior is shown in the bottom panel of Fig. 1. Note
the three separate branches and the discontinuity
between the high- and low-moment branches. In this
case, there are three singularities and the evolution is
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classified as a type-III tfaIlsltloI1.
The details of the E(M) behavior in the transition

region are system dependent, and can become even
more complicated than those shown for type-I, type-II,
and type-III transitions. Consider an evolution which
involves, at some intermediate volume, an E(M)
curve with three local energy minima, one at M=O
and two at finite M values. Once again, two magnetic
(one at high moments and one at low moments) and
one nonmagnetic minima occur, but in this case the
branch corresponding to the low-moment minimum
does not join with the nonmagnetic branch. The rela-
tion of the lower termination of the low-moment
branch and the upper termination of the nonmagnetic
branch must resemble that exhibited for a type-II tran-
sition. Furthermore, the upper termination of the
low-moment branch and the lower termination of the
high-moment branch must resemble those of a type-III
transition. In this case there are four critical volumes,
one marking the upper termination of the nonmagnet-
ic minimum, one marking the lower termination of the
high-moment minimum and two marking the upper
and lower terminations of the low-moment minimum.
The M( V) behavior for this case shows a nonmagnet-
ic, a low-moment, and a high-moment branch, similar
to that of a type-III transition, but with a discontinuity
between the nonmagnetic and the low-moment
branch. Evolutions of this kind exhibit four singulari-
ties and are classified as type-IV transitions.

Examples of each of the four transition types de-
scribed above have been identified in the results of
first-principles calculations5 of E(M) curves for bcc
nickel, 6 fcc cobalt, ~ bcc vanadium, and fcc iron. 6

The results are based on electronic structure calcula-
tions using the augmented-spherical-wave method of
Williams, Kubler, and Gelatt, which assumes the
local-spin-density treatment formulated by von Barth
and Hedin'0 and modified by Janak. " In Fig. 2 I show
the calculated M vs V/ Vo behavior. Here Vo is the
calculated cqulllbflum volume coffcspondlng to zcl'0
pressure. The calculated results illustrate that these
systems exhibit one, two, three, and four singularities,
and undergo type-I, -II, -III, and -IV transitions,
respectively. Note that singular behavior occurs at a
1.5% volume expansion for bcc nickel, at approximate-
ly a 10% volume compression for fcc cobalt, in the vi-
cinity of a 200k volume expansion for fcc iron, and at a
much larger volume expansion for bcc vanadium. The
examples shown in Fig. 2 are representative of dif-
ferent possible E(M) evolutions from nonmagnetic to
magnetic behavior. Calculations indicate that all tran-
sition metals undergo similar transitions. Normally oc-
curring bcc iron and fcc nickel and nonequilibrium bcc
cobalt undergo transitions and exhibit singularities at
large volume compressions (corresponding to pres-
sures of thousands of kilobars). For fcc vanadium, a
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FIG. 2. Calculated M( V) curves for bcc nickel, fcc
cobalt, bcc vanadium, and fcc iron showing critical behavior
in the transition region. The horizontal axis is the reduced
volume, V/ Vo, where V0 is the equilibrium volume. The
horizontal scale for vanadium is different from that for iron,
cobalt, and nickel. Note that bcc nickel, fcc cobalt, bcc
vanadium, and fcc iron exhibit type-I, type-II, type-III, and
type-IV transitions, respectively (see text). AH results are
based on nonrelativistic augmented-spherical-wave electron-
ic structure calculations utilizing a uniform k mesh of 507
points for the fcc, and 405 points for the bcc irreducible
wedge of the Brillouin zone.

0.8

type-I transition is found at approximately the same
(expanded) volume as bcc vanadium. A type-I transi-
tion is also found for fcc palladium at a small vol-
ume expansion, with moments comparable to those of
nickel.

Some of the nonequilibrium structures discussed
above can be stabilized by clamping thin films at the
appropriate lattice constants. Recently, Brodsky and
Freeman'2 showed that thin films of palladium sand-
wiched between thin films of gold, which presumably
expanded the lattice constant, exhibited large increases
in magnetic susceptibility, and were on the verge of
being magnetic. More recently, Prinz' demonstrated
the feasibility of making thin films of nonequilibrium
structures by epitaxial growth on suitably chosen sub-
strates. This rapidly developing capability creates the
possibility of artificial stabilization of the structures
discussed and of experimental observation of the
predicted singular behavior. The bcc-nickel case is
particularly appealing for three reasons: (1) The type-I
transition is the simplest, (2) the singularity occurs at
only a 1.5% volume expansion, and (3) the fcc and bcc
equilibrium (zero pressure) volumes are almost the
same with a total energy difference at equilibrium of
only 4 mRy. 7

The origin of the singular behavior lies in the details
of the single-particle state density which determines
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the kinetic-energy price required to exploit intra-
atomic exchange. The state density is a volume-
dependent, mulitpeaked structure dominated by the d
bands. At low volumes, the kinetic-energy price is so
high that exchange cannot be exploited and a nonmag-
netic state is preferred. At high volumes, the kinetic-
energy price is low and the system can take advantage
of exchange and become magnetic. In principle, there
can be a different magnetic state for each major peak
in the state density because each controls the kinetic-
energy price that must be paid for incremental changes
in the magnetic moment. The singularities are the
direct result of the appearance and disappearance of
different magnetic states.

In summary, I have shown that the transition from
nonmagnetic to magnetic behavior must exhibit
square-root singularities'4 at critical volumes where
dM/d Vis infinite, and that M( V) is often multivalued
and discontinuous. I have used parameter-free, fixed-
moment, spin-polarized energy-band calculations to
determine the M( V) behavior for a number of real
systems. The results yield a clear resolution of the
M( V) behavior in the transition region, and support
the general predictions. The major significance of this
work is the demonstration that M( V) cannot show a
gradual decrease to zero moment with decreasing
volume. This is a general result that is independent of
the method of calculation, and that applies to any sys-
tem capable of sustaining itinerant-electron magnetic
behavior.
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