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Theory of the Orientational Glass State in M(CN), X, _, Mixed Crystals
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A microscopic model of mixed crystals with orientational disorder and translation-rotation cou-
pling is proposed. The substitutional halogens generate random strain fields which couple to the
orientational modes. At large fields, the ferroelastic phase transition is suppressed. The anomalous
behavior of acoustic phonons is studied. The central peak is obtained as a static phenomenon.
Qualitative agreement with a number of experimental results is obtained.

PACS numbers: 61.40.+b, 63.20.Mt, 64.60.Cn

Below a concentration x, of CN™, mixed crystals
M(CN), X, _,, where M is an alkali metal and X a
halogen ion, no longer display a ferroelastic phase
transition to a low-symmetry state with long-range
order.! The transverse acoustic phonon frequency
exhibits a rounded minimum at a temperature T
= T;(x).2-* Below Ty, a sharp central peak, the inten-
sity of which grows strongly with decreasing 7, is
found by neutron scattering.2>® The average lattice
structure stays cubic!"’ for x < Xx.. These experimen-
tal facts suggest that for T < T, the system freezes
into an orientational glass state.> The bilinear trans-
lation-rotation ( T-R) coupling leads to a simultaneous
freezing in of translational and orientational modes of

VSR= 3 Ya(K) ho (= k (o)),

Ty, symmetry.? Theoretical work has been based on
the assumption of randomness of the quadrupolar in-
teraction.’ At T; < Ty, there is ample experimental
evidence for dipolar freezing.!®!! So far there exists
no coherent explanation of the experimental facts.
From the experimental observation!"* that x, ~0.2
for M=K and X =Cl and that x, = 0.4 for M=K and
X =Br, I conclude that the substitutional halogens play
an important role. Using the theory of defects in
solids,!? I calculate the change of forces AFX which are
exerted on the surrounding crystal by the substitution-
al halogens. These forces lead to static, temperature-
independent strain fields /4, which couple to the orien-
tational degrees of freedom Y, of the CN~ ions:

(1)

ha( =k, [ }) =3 {(1—x) = [1-0(n)]}va (k) 4, (K)explik -X(n)]. 2

Here (o} denotes a quenched configuration of CN~
ions, with o(n) =1 or 0, depending on the presence of
CN~ or X~, respectively, at site n. The matrix v,,;(k)
represents the bilinear T-R coupling.!* The index o
labels the three modes with /=2 and 7, symmetry.'?
A(k)=M"1(k)v¥(k) is the amplitude of lattice
strains.!> Here M (k) is the acoustic bare dynamical
matrix and v¥« AFY. Denoting the configurational
average by an overbar, and using the fact that the dis-
tribution of halogens is random, we have

ho(n) =0, h2(n)=x(1-x A, (3)
where A2=(1/N) 3y [vq,(k) 4;(k) 2. Properties (3)

In addition to the static strain coupling (1), I have
the interaction of orientational modes with dynamic
acoustic lattice vibrations s;(k),!3

VIR= 3 Yo (K)vg (k) 5, (k). (4)

I also include the usual elastic interaction V7T with
dynamical matrix M (k), the direct rotational interac-
tion VRR with coupling J(k), and an orientational
crystal-field potential VR Using these potentials, I
calculate the free energy F for a configuration {o}.
The term VR plays the role of an external random
field."* Finally, I take the configurational average by

using Egs. (3). Up to second order, I find within
] molecular-field theory
F=Fr++ 3, s () M(K)se(k) +2Ye (K)v (k)se(k) + [(X*)~ 1+ J (k) + CIY (k) Ye(k) ). €))

Here Fy is the crystal-field contribution, s® and Y® are the instantaneous values of the translational coordinates, C*
is the orientational self-energy, and X° the local susceptibility

X0=x(y/T)[1—x(1—x)ERY T]. (6)

The functions y and ¢ are weakly temperature dependent. If one takes k= (0,0,k), all matrices become diagonal.
The collective orientational susceptibility is obtained from Eq. (5) as

XYY=x%(1-5x9), @)

are characteristic for random-field systems.!*
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FIG. 1. Collective orientational susceptibility X" as a
function of temperature; £ =300 K for continuous curves,
h =400 for broken curve. CN concentration x as indicated.

where 3 is the largest eigenvalue of the total orienta-
tional interaction [v'M~w—J—C%. If h=0, x¥¥
diverges at a temperature T,= xyd, which reflects a
second-order phase transition. If A=0 and is suffi-
ciently large, XY stays finite and shows a rounded
maximum, as is shown in Fig. 1. Numerical calcula-
tions yield #=150 K for the bromine and 450 K for
the chlorine mixed crystal. One should not overem-
phasize the absolute value of these numbers since the
microscopic interaction potentials are loaded with
some uncertainties.'®
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FIG. 2. Phase diagram for K(CN),Br,_, as a function of
concentration and temperature, with values ¢ =0.06,

h =294 K chosen as parameters. To be compared with Fig.
1 of Ref. 7.

On the basis of the expressions (5) and (6) I have
calculated the phase diagram as a function of concen-
tration x and temperature. The result is shown in Fig.
2. There x_ is the lowest value of x where the ferro-
elastic transition to an ordered state occurs; Tj is the
corresponding temperature. The orientational glass
state occurs for x < x, and T;(x) < T.

The transverse-acoustic phonon frequencies w?(k)
are given by Dy;(k), the inverse of the displacements
susceptibility (s (k)s(k))/T. 1 obtain

1—x% ]

Dy (K)/ My (k)= m

(®)

which is equal to the ratio of elastic constants ca4/cd.
The T and x dependence is shown in Fig. 3; it agrees
with experiment.>

The position of the minimum 7, depends on the
frequency of the experimental method.>*!¢ I therefore
consider the dynamic correlation function

S§ (ko)

_ TA; f(w)
T T -Dnke) P+ leby f@P O
where
Du(k,w)=D1|(k)+w2A“f(m)/)\, (10)

with f(w)=N/(w?+A?). Here Ay (k)=M; (k)
— Dy, (k), and X accounts for orientational relaxation.
I take A(T7)=Ao(7/240)"? with k\o=1 THz. The
temperature behavior of D;;(k, w) and of the damping
I'(k,0) =wA; f(w) is shown in Fig. 4. Here the
qualitative agreement with experiments'®!? is also
very good.

The static strain interaction VSR leads to the appear-
ance of a central peak. Since locally, the cubic sym-
metry is broken,® I obtain at lattice site 1

(Ya(D)) == (/D a1, {a]). 11)
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FIG. 3. Temperature dependence of elastic constants

C4s = caa/cdy for h=300 K and CN concentration x=0.1,
0.3,0.4, and 0.5.
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FIG. 4. Temperature dependence of D= D;(k w)/
M, (k) for (curve b) w=0.2 THz, (curve a) w=0.0. Bro-
ken curve shows damping I'=T(w)/M),(k), ©=0.2 THz.
In all cases x=0.4 and # =300 K.

Relations (3) imply that (¥) =0 and
(Y (D)2=xV, (12)

where ¥ = (y/ T)2h*x(1— x) is the orientational glass-
state order parameter. As a result of T-R coupling, it
can be seen that 5(n)=0, but (5(n))2c x¥. The
property (12) leads to the existence of a static central
peak in addition to the dynamic part of the scattering
law.® A similar separation of a static part (due to a
breaking of local symmetry) and a dynamic part (due
to time-dependent fluctuations) was previously made
for the description of displacement fields in the pres-
ence of frozen interstitial defects.'® The asymmetric
shape of the intensity contours in Q space’ of the cen-
tral peak is a direct signature of T-R coupling of T,
symmetry.® Deviations from cubic symmetry on a lo-
cal scale in the lattice are reflected in the temperature
dependence of x-ray diffraction linewidths’ and in a
temperature-dependence distribution of electric-field
gradients as measured by NMR.!? I conclude, there-
fore, that these phenomena must be proportional to ¥
and have the same temperature dependence as the in-
tensity of the central peak. My calculations of F have
been based on classical statistical mechanics; therefore
my results break down at low 7<30 K where a
quantum-mechanical treatment is required.zo Howev-
er, the physical mechanism, which is based on the cou-
pling of random strain fields to orientational modes, is
still valid. I also expect that my theory can be extend-
ed to a description of strain coupling to orientational
modes of 7}, symmetry. Such an extension should be
relevant for a description of the dipolar glass state.!%1!

Previously it has been remarked!? that the lattice-
mediated interaction in KCN bears analogies to the
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system of hydrogen dissolved in pure metals. Recent-
ly it has been shown that hydrogen dissolved in metal-
lic alloys can be considered as a lattice gas with internal
random fields.?! This point of view is analogous to the
one I have adopted here for the description of mixed
crystals with orientational disorder. A detailed account
of the present work will be given elsewhere.

The author has benefited for many years from
stimulating discussions with J. M. Rowe. This work is
financially supported by the National Science Founda-
tion of Belgium.
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