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Wetting of a Disordered Substrate: Exact Critical Behavior in Two Dimensions
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The critical behavior of the wetting transition of a two-dimensional solid-on-solid model with a
random substrate is calculated exactly. By resumming of the most divergent diagrams of a field-
theoretical version of the model, the disorder is found to be marginal and to lead to logarithmic
corrections to the critical behavior of the pure system.
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Under suitable conditions, one of the phases of a
multiphase system at coexistence enclosed in a con-
tainer can form a macroscopically thick film on the
wall of the container. When this occurs in a continu-
ous way, a critical wetting transition is said to take
place. '

The effect of randomness on this transition is the
subject of great current interest. Two kinds of ran-
domness have been considered. (i) Impurities in the
bulk can change the universality class of wetting in two
dimensions, as shown by Kardar2 and by Lipowsky and
Fisher. (ii) Disorder in the short-ranged wall-adatom
interaction, i.e., on the substrate, has been considered
with use of the Harris criterion4 and mean-field calcu-
lations. 5 It was shown that disorder is irrelevant for
more dimensions than two, and marginal in two
dimensions (because of the vanishing of the specific-
heat exponent a). However, since the specific heat
does not diverge at the pure critical point, the effect of
the disorder is expected to be quite weak.

The purpose of this paper is to investigate this two-
dimensional marginal case and calculate the correc-
tions due to disorder. We are able to find exactly the
critical singularities of the restricted solid-on-solid
(SOS) model6 of the wetting problem. The main
results of this paper are that (i) the critical tempera-
ture of the quenched system is the same as that of the
annealed system and (ii) the specific heat develops
logarithmic corrections, possibly related to Grifflths
singularities, while other observables such as the
average distance between the substrate and the inter-
face do not exhibit such singularities.

The method used is the replica trick and an exact
resummation of the most divergent diagrams of the
weak disorder expansion. The validity of the replica
trick has been checked numerically with a very high
accuracy.

In the following, we will briefly describe our calcula-

tions. A detailed version will be published elsewhere. s

Our starting point is a discrete SOS6 model, where a
configuration of the interface is characterized by a set
of variables h, , the index i= 1, . . . , % numbers the
columns, and 1tt is the height of the interface at the ith
column with respect to the substrate level h =0. The
height variables are positive integers, and we further
assume that the system is enclosed in a box of height
L, so that hi= {0,1,2, . . . , L ).

The SOS model is known not to take into account
certain effects such as overhangs or bubbles of one
phase inside another. However, it is reasonable to use
it to model the wetting transition, especially when the
wetting temperature is not too close to the critical tem-
perature.

We use a restricted SOS model in which the inter-
face can wander only by zero or one step between two
adjacent columns. The energy of the interface is thus
given by

E( { ht }) = I X I ht+ i
—ht {

—X uP ( ht ) .

The first term accounts for the surface tension in
bending of the interface, and the second term rep-
resents the effect of the substrate random field. We
assume the random field { u, ) to be a set of indepen-
dent random Gaussian variables with mean value uo
and variance u. It can be shown8 that the random-field
distribution is irrelevant to the critical behavior.

The quenched average of observables is performed
by use of the replica trick, 9 which amounts to intro-
ducing an additional index et=1, . . . , n to the height
variables. It is a simple matter to show that in the
thermodynamic limit, Z"=A~, where Z is the parti-
tion function, the bar stands for the average over the
disorder, and A„denotes the largest eigenvalue of the
transfer matrix M„, which acts in the space of n-
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dimensional vectors (hi, . . . , h„):

M, (lh j, lh' })=exp —PJ X lh —h'
l +Pu X 5(h )+uP2

a~1 e 1

&(h.)~(h,),
1&a(Pn

(2)

where u=u„+Pe/2. The quenched free energy is
given by PF—= BZ„/jnl„

In order to evaluate the largest eigenvalue A„, let us
recall how things work in the annealed case, i.e., when
the partition function is averaged over the disorder.

This amounts to setting n -1 in (2) and it is formal-
ly equivalent to the nonrandom case. The matrix Mi
has two sets of eigenstates, namely, a localized one,
denoted by Qo(h), and a set of nonlocalized ones,
denoted by $~(h). The wetting transition takes place
at T- T, where the localization length/-ib '= (T„
—T) ' of the state $o diverges. This occurs
when y= (1+2t)/(1+ t), where y-exp(Pu) and
t = exp( —PJ).

In the critical region (p, 0), on the dry side
(p, & 0), the localized eigenstate reads

qho( h) - (2p, ) '~'a„e t'",

where ~b= 1 except for ~o=y 'i2. The corresponding
eigenvalue is given by &o=1+2t+ tp, 2 and the value
of the wave function at the origin is denoted by fo.

The set of nonlocalized eigenstates is given by

(3)

$q(h) = (2/L)' 'a
sinq (h —L), (4)

with eigenvalue &~ -1+2t —tq2 (for small q).
Equation (4) applied at h 0 implies a quantization

condition on the q's, which reads

tanqL =
y(1+ tcosq) —(1+2tcosq)

This equation has L +1 positive solutions q, in the in-
terval [0,n j, and in the thermodynamic limit, we use

L 'X~ n 'f dq. The wave function at the origin is
given (for small q) by

2

,
yL q'+p, ' (6)

These results imply a discontinuous specific heat and
that the average distance (h) between the substrate
and the interface diverges as 1/( T„—T).

It will be useful for the quenched case to define an
effective Hamiltonian Ho by the relation Mi
= (1+2t)exp( —Ho). In terms of the eigenstates and
eigenvalues of Mi, the Hamiltonian reads (for small q
and small p, )

Ho= -~~'l~o) (~ol+~ X, q'l~, ) (~, l,

where y = t/(1+2t).
It will be shown in a forthcoming paper that the ex-

act critical behavior of the quenched system is given
by the largest eigenvalue of the many-body Hamiltoni-
an

H XHo —X Vp, (&)
a&P

where Ho is the same Hamiltonian as (7), with an ad-
ditional replica index a, and Vti is the interaction
term in Eq. (2). The n particles labeled by a are to be
considered as distinguishable particles, since they are
not constrained to any symmetrization condition a
priori. However, since the Hamiltonian H is totally
symmetric, it is well known that its ground state has
the same property, i.e., it is a bosonic state.

We may thus consider the bosonic second-quantized
I representation of H, denoted by Hb.

Hb
= r~2+o'+o+—X~q2+t~, X()i—.l

—vl.p)~.'~„~.+,, (9)
e kgas p

where V„and 'pz denote the creation and annihilation operators of a particle in lpga). It is easy to check that the
matrix element of the two-body interaction V (which is a diagonal two-body interaction) is given by

(~i l vl~ p) = gfi,f,f.f, (10)

where g = 2vP2.
In order to calculate the ground state energy of Hb, we shall perform a perturbation expansion in powers of g.

This is most simply done by using the high-spin trick. 'o The idea is to replace the n-boson system by a system of n
fermions which have the same quantum numbers, but have an additional color degree of freedom denoted by a,
which ranges from 1 to n

Let us consider the fermion Hamiltonian

Hf= X ( —vu'+o +o +Xvq''P~ +~ ) —— $ $ fxf„ft,f.K +
cr 1 ~ ~em i kglvP

It is very easy to show that the Hamiltonians H~ and Hb have the same ground-state energies and wave functions.
We treat the interaction in perturbation theory using the Goldstone" time-oriented diagrams.
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The unperturbed ground state is a Slater deter-
minant where the n particles are in the state )$p ),
with color o-= 1, . . . , tr. The ground-state energy is
the sum of all vacuum Goldstone diagrams, evaluated
with the following rules: (a) A diagram is a set of
time-ordered vertices connected by oriented down-
going and upgoing lines. (b) Each downgoing line
represents a hole state ~@p ), with energy —yp, 2, and
each upgoing line represents a particle state ~$» ),
with energy yq2. A line connecting the same vertex is
a hole line. (c) Each interaction is represented by a
vertex [Fig. 1(a)l, with a contribution of —g. Each
hole line carries a factor fp and each particle line car-
ries a factor f». (d) Between any pair of consecutive
vertices, there is an energy denominator, equal to the
sum of the energies of the upgoing lines minus the
sum of the energies of the downgoing lines. (e) Final-
ly, one must sum over all states A. and color labels rr,
and there is a factor —1 for each fermion loop and a
factor —,

' for each pair of equivalent lines.
In the thermodynamic limit, all sums are replaced by

FIG. l. (a) Diagram for the vertex. (h) A typical vacuum
Goldstone diagram.

integrals, and, for example, the diagram of Fig. 1(b) is
given by

f'2 p2»t4L' ~e~~a2(-i) n ffp 2„p qi„p q22 2 2 2
~

7r p,

From rule (e), it is obvious that in the limit n=0,
only diagrams with a single loop survive, as in the case
of polymers. '2

Let us consider a generic diagram contributing to the
ground-state energy E„. Let us denote the numbers of
its hole lines, particle lines, and vertices, respectively,
by Nt„W~, V. There is an obvious topological relation
N~+N&=2 V, and after rescaling of the momenta
q, =p. x„ the contribution of the graph has the form

2
'N +N~N2 p%'/fl,

( g)v JJ

(2»r) &" i=i" ~ ~ ~ ~

1

V-1
I

+ i J 1

a Xx,2+ oI X 1 (12)

When p. 0, we see that the critical behavior is determined by the most ultraviolet-divergent diagrams. The su-
perficial degree of divergence of I is given by &&= N~

—2( V —1) =2 —N„. If 5& & 0, the diagram converges,
whereas it diverges if Sr & 0. Thus, since for any diagram one has Nt, ) 2, the only divergent diagrams are those
with Nt, -2, and since they have Sr =0, they are logarithmically divergent. We have thus

E„=—ny p+(su,m of all ladder graphs of Fig. 2).
Because of the factorized nature of V, these diagrams can be resummed in a geometric series, leading to

E„=—nyp, 2
ng p2(2/y )2—,(1—gl)

where

(14)

4 1+2t 1 1I=
y2 t ~2 vP JP ~2+ q2 ~2+ q2 2~2+ q2 +q2dqi dq2

This integral can be evaluated for small p, and yields I= [2(1+2t)/ty2»r] in(p, '). Hence, the free energy is given
by

PF = ln(1+2t—) + [p,2t/(I+2t) ) [S+2/l»nr(p')], ,

where Sis the sum of all nondivergent diagrams.
The ln(p, ') singularity also shows up in the specif-

ic heat. It is remarkable to note that the nonsingular
part depends on g, whereas the logarithmic correction
which involves only divergent diagrams is universal
and independent of the disorder. Also, the condition
of criticality of the quenched system is identical to that
of the annealed system, for arbitrary disorder.

The same kind of power counting can be done to
show that the average distance (h) between the sub-
strate and the interface is not affected by the disorder.
In particular, it is not corrected by logarithms. a

(16)

We have checked our results numerically, by an ex-
act enumeration of disorder configurations of an infi-
nite strip of finite width N=1, . . . , 8. Indeed, our
analysis could be invalidated if the replica trick should

1 + ~ 0 ~ ~ ~ ~ ~ + I + ~ ~ ~ ~ O ~ ~ ~

FIG. 2. Sum of ladder diagrams giving the most divergent
contribution to the ground-state energy.

2186



VOr.UME 57, NUMBER 17 PHYSICAL REVIEW LETTERS 27 OcT08ER 1986

fail. We used a two-valued random field, and calculat-
ed numerically the largest eigenvalue of the transfer
matrix of a strip of width W. This eigenvalue is related
to the free energy of a periodic strip of infinite width
with period N, and it is obtained by our representing
the eigenstate by a mixture of %plane waves and solv-
ing for the matching conditions. Observables are then
averaged over the 2~ configurations of disorder. The
fact that the critical temperature of the quenched sys-
tem is identical to that of the annealed system is veri-
fied with a very high accuracy ( = 1/1000). The loga-
rithmic corrections are not seen, but this is because
the region where they are sizable is exponentially small
with the disorder.
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