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Large Intensity Fluctuations for ~ave Propagation in Random Media
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The intensity pattern generated by a monochromatic point source in a random medium is stu-
died. Thc intensity-intensity correlation function ls calculated and lt ls sh0%n that. the intensity, as
a function of coordinate, exhibits large fluctuations (the speckle pattern). The sensitivity of this
speckle pattern to small changes in the source frequency is also studied.

PACS numbers: 42.20.Ji, 71.55.Jv

A wave propagating in a random medium undergoes
multiple scattering from the inhomogeneities. The
scattered waves interfere with each other and, as a
result, a certain intensity pattern is formed. In a ran-
dom medium, as opposed, e.g. , to a crystal, one
would, naively, expect an efficient averaging process
and therefore a fairly smooth intensity pattern, with
only small intensity fluctuations. Instead, however,
one finds a highly irregular pattern, with large intensity
changes over short distances. The irregularities are
not due to noise. Each microscopic realization of the
random medium, i.e., each sample of the statistical en-
semble, displays its own pattern —a "fingerprint"
which reflects the specific arrangement of the inhomo-
geneities (impurities) in that sample. This phenome-
non is quite familiar in optics where it is termed "a
speckle pattern" and usually refers to an intensity pat-
tern formed on a screen by light reflected from a
rough surface. Below, this term is used in a somewhat
broader sense and refers to an intensity pattern formed
in the bulk of a disordered medium when a wave
(electromagnetic, acoustic, or an electron wave) pro-
pagates through it.

There exists a huge literature on the subject. ' 3 In
early work, usually certain assumptions were made
directly on the statistics of the scattered light (rather
than on the statistical properties of the disordered
medium). The "first principles" work, i.e., that which
tries to derive properties of the speckle patterns direct-
ly from the wave equation, is mostly limited to smooth
inhomogeneities (the wavelength much shorter than
the characteristic inhomogeneity size). 2~ The subject
of light propagation in random media has been recent-
ly given a new boost as a result of a number of experi-
ments. These experiments revealed an enhanced back-
scattering, in combination with large intensity fluctua-
tions6 and high sensitivity of the speckle pattern to re-
latively small changes of the source frequency. 7

Similar phenomena exist, and are being extensively
studied, in the electron transport in disordered sys-
tems. The point is that as long as the sample size is
smaller than the inelastic scattering length (the meso-
seopic regime), an electron propagates coherently

through the entire sample and, thus, takes a "finger-
print" of the specifi, for that sample, impurity ar-
rangement. This manifests itself in various interfer-
ence phenomena and in extreme sensitivity of the con-
ductance to small changes of various factors. s '2

The purpose of the present work is to calculate some
properties of speckle patterns, specifically the intensity
correlation function, for a scalar field. Such a field can
represent an electron wave function, an acoustic wave,
or (if polarization effects can be neglected) one of the
components of an electromagnetic wave. Consider,
thus, an infinite disordered medium with a mono-
chromatic point source (a transmitter) located at a
point rp. The field at point r is detected by a receiver,
and it is given by the Green's function which satisfies
the wave equation

I V'+ k,' [I + p, (r) ] + tq}G„(r,rp) = 5(r —r, ) . (1)

Here p (r) represents the fluctuating part of the refrac-
tion index or, in quantum mechanics, the (properly
normalized) random potential. to is the source fre-
quency, rl is a positive infinitesimal, and kp=to/cp is
the wave number in free space, cp being the corre-
sponding speed of propagation (with an obvious
change in wording for the Schrodinger-equation case).
In fact, more generally, kp refers not to free space but
rather to the average medium; i.e., the average value
of p, is set equal to zero. To specify the problem com-
pletely one needs to give the statistical properties of
the fluctuating refraction index p, (r). We consider
white-noise Gaussian statistics, i.e.,

(p, (r)) =0, (p, (r)p, (r')) = u5(r —r'),

where u is a constant and the angular brackets mean an
average over the statistical ensemble of random sam-
ples.

The intensity I (r, rp) at a point r is proportional to
{G„(r,rp){2. The proportionality coefficient depends
on the strength of the source and on the intensity
units, and is set equal to unity (the actual intensity can
always be obtained by multiplying the results by the
corresponding factor). Our purpose, thus, is to calcu-
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late the intensity-intensity correlation function:

C(r —ro, r' —ro, Acu) —= (l„(r,ro) I„+a„(r',ro) —(1„(r—ro) ) (I„+a„(r'—ro) ) . (3)

where p, (q) is the Fourier transform of p, (r) and
Go (k) = ko2 —k2+ iq) ' is the unperturbed Green's
function. Averaging is done by the standard perturba-
tion technique (e.g. , see, Abrikosov, Gorkov, and
Dzyaloshinski'3 for electrons, and Frish'" for classical
waves). G (k, k') is expanded in a perturbation series
with respect to p, (q). Each term in the expansion is
represented by a diagram, like that in Fig. 1(a), with
solid and dashed lines corresponding to free propaga-
tion and scattering, respectively. Averaging then
amounts to pairing the dashed lines in all possible
Wa,y
quir

tensity correlation function, respectively, are handled
in a similar way. Assuming weak disorder, one can
then compute various quantities in perturbation theory
with respect to the small parameter 1/kol, where
I= 4n/—uko4 is the elastic mean free path. In the lead-
ing approximation, one obtains for the averaged
Green's function (G„(k,k')) = G (k)&z „,, with

(5)G (k) [ko2 —k +i(ko/l)l

s. Products of two or four Green's functions, re- which, after transformation back to real space, gives an
ed for calculating the average intensity and the in- exponential decay for (G„(r—ro)).

The average intensity at point r is given by

(l(r —ro)) = 0 X exp[I(kt —k3) (r —ro)](G(kt, k2) G"(k3 k4)), (6)
&i&2&3&4

For b, cu =0, C is expected to decay when r' moves away from r. The corresponding decay length gives, in fact, the
typical size of a speckle, i.e., of a bright or dark spot (in optical terms). Similarly, for r = r' but Acoe0, C describes
the sensitivity of the speckle pattern to a change in frequency.

The calculation is more conveniently done in momentum space; i.e., the Green's function is expanded in a
Fourier series. The Fourier transform, G (k, k') (the same symbol is used to avoid cluttering up the notation),
satisfies the integral equation

G„(k,k') - Go (k)8 .—k$ X„Go(k)p, (q) G„(k—q, k'), (4)

where 0 is a normalizing volume. In the leading ap-
proximation, one has to sum the ladder diagrams, i.e.,
to consider the object 8'~, (q, Ere) shown in Fig. 1(b)
and known as "diffusion" in electron transport
theory. '5 (Although for the intensity calculation it
suffices to consider Lian-0, a finite h~ is kept for fur-

ther use. ) Thick lines between the dashed lines of the
ladder represent dressed propagators [Eq. (5)] and
their complex conjugates (the lower lines). A factor
uko/0 is assigned to each dashed line. When the
resulting geometric series is summed one obtains, for
small q and h~,

(a)

(b)

I I l

k+ q cu + Dw k+ q

+ I I + ~ ~

I I

~,(q, ~ ) = 12m 1

0 I3 q2 —3i (Aalu/lco)

"Small bc'" means /Scan/co(( 1, whereas "small q"
means q/(( 1. This is sufficient if one is interested
in )r —ro~ && 1; i.e., the transmitter and receiver are
separated by at least several mean free paths. To com-
plete the intensity calculation one has to attach to the
"box" in Fig. 1(b) four (dressed) propagators, with
corresponding momenta, multiply the diagram by
exp(iq r) (the source location, ro, is taken to be at
r =0), and integrate over the momenta. The result is

k+ q-k
&l(r)) -3/16 'l.,

FIG. 1. (a) A diagram in the G„(k,k') expansion before
averaging. (h) The set of ladder diagrams arising in the
average intensity calculation. {c) The diagram representing
the intensity correlation function.

which, up to a numerical factor due to different nor-
malization, coincides with the result obtained in
Ishimaru's bookt by a different method. The 1/r
dependence in Eq. (8) means that, for r » I, the
wave propagates by a diffusion process and the intensi-
ty obeys a diffusion equation (see e.g., Ref. 1).
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Let me stress that, in the weak-disorder limit, the
ladder approximation is sufficient for calculating the
total intensity [Eq. (8)]. It would not be, generally,
sufficient if one requires the object (G(ki, k&)
& G '(k3,k4)) for any value of momenta. This object
contains more information than just the total intensity,
to which it is related by Eq. (6). In particular, for cer-
tain values of momenta another set of diagrams (maxi-
mally crossed diagram) gives a contribution compar-
able to the ladder diagrams. This is the enhanced
backscattering phenomenon, discussed in simple
terms, e.g. , by Akkermans and Maynard'6 and calcu-
lated for various geometries by Stephan' (for an early
diagrammatic calculation see Barabanenkov's).

Next we calculate the intensity correlation function

defined in Eq. (3). For this one has to draw two rings,
representing the two intensities to be averaged, and to
insert "ladder boxes, " 8', in all possible ways [e.g. ,
Fig. 1(c)]. [The diagram with no connections between
the two rings should not be counted, since it cancels
the second term on the right-hand side of Eq. (3)].
The diagram in Fig. 1(c) is then multiplied by corre-
sponding vertex factors, namely, exp[i(k+q —k') r]
for vertex 1 and exp[i(k'+q' —k) r'] for vertex 3
(since r0=0, no factors for vertices 2 and 4 appear),
and integrated over the momenta. It turns out that, in
leading order with respect to 1/kol, the diagram in Fig.
1(c) is the only relevant diagram.

I discuss separately the two cases mentioned above.
(i) The source frequency is fixed, i.e., hem=0. For

this case the diagram gives

C(r, r') = ( l„(r)) ( 1„(r')}(sinkoh r/koh r )'exp( —5 r/I),
where br—= (b,r(= (r —r'(. For b, r=0, Eq. (9) reduces
to the variance, (51~), at point r and gives
(Al~) = (1)~. These are the large intensity fluctua-
tions obtained pre~iously by many workers. ' A com-
mon inituitive argument for this result is based on the
observation that the wave amplitude at point r is a sum
of many contributions which correspond to different
scattering processes. Assuming then random and un-
correlated phases for different processes, one can im-
mediately calculate not only the moments of intensity
but the entire probability distribution P(l) = (1/(I) )
xexp( —I/(I)) (it is useful to employ the analogy
with a random walk in a plane3). For a smooth ran-
dom potential (the parabolic approximation) this dis-
tribution, as well as corrections to it, was calculated
directly from the wave equation by Dashen, 4 using a
path-integral technique. The present diagrammatic
method allows the derivation of this result also for the
opposite case of a white-noise potential. Indeed, the
nth moment of intensity, (I"), is obtained by drawing
n rings (2n propagators) and inserting ladders between
various pairs of propagators (n. possibilities). Thus,
(I")= n! (I)", which corresponds to the above written
distribution for 1. For br~0, Eq. (9) tells us that the
typical size of a speckle does not depend on the dis-
tance from the source and it is of the order of the
(elastic) mean free path, or the phase coherence
length, 1. There is also some further intensity modula-
tion within a speckle (the sine factor). As a result of
diffusion-type propagation, a speckle is on the average
isotropic. Qualitatively, these results should also hold
for the slab geometry (commonly employed in experi-
ments on light transmission and reflection), provided
that the impinging light beam is sufficiently well col-
limated, namely, its width L is not large compared to l.

In this case the "bulk" speckles, of size l, within the
slabs should produce "plane" speckles of angular size
li./I (and larger) on a screen outside the slab (A. is the

wavelength). On the other hand, for a wide impinging
beam (L && I), which so far seems to be the common
experimental situation, L (and possibly, the slab thick-
ness) is expected to be the relevant length.

(ii) The source frequency is changed by b, co and the
intensity change at point r is observed, i.e., Dr=0.
For this case the diagram in Fig. 1(c) gives

C(r;Aoi) = (1(r)) 'exp—
1]2

6r AQJ

(co
(10)

Thus, the intensity at point r, as a function of frequen-
cy, will typically display a sequence of peaks and val-
leys separated by frequencies hcu ——col/r~ This resu. lt
is intuitively clear. Because of diffusion, the actual
path length to the point r is L = r~/L To produce a
significant change in phase for this path, a change of
order co/L, i.e., col/r~, in the source frequency (or the
electron energy) is needed. ~ 9'0

It is worthwhile mentioning that the correlation
function C(r, r') is a somewhat simpler object than
the correlation function for the electronic conductance
studied in Refs. 10 and 11. It is true that the diagram
in Fig. 1(c)—being related to the square of the
density-density correlation function —does contain in-
formation about the diffusion coefficient (and thus
conductance) fluctuations. However, in order to ex-
tract this information one has to consider, in addition
to the limit A~ 0, the limit of zero external momen-
ta (i.e., the momenta assigned to the wavy lines). The
diagram then develops a strong singularity (fourth
power of momentum in the denominator), which pro-
duces the universal conductance fluctuations. '0 "'9
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to the subject of large intensity fluctuations and for
many discussions and explanations in the course of
this work. I am also grateful to P. A. Lee for an im-
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