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Three-Dimensional Instability of Elliptical Flow
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A theory is presented for Pierrehumbert s three-dimensional short-wave inviscid instability of
the simple two-dimensional elliptical flow with velocity field u(x,y, z) = 0( —Ey, E x, 0). The
fundamental modes, which are also exact solutions of the nonlinear equations, are plane ~aves
whose wave vector rotates elliptically around the z axis with period 2m/Q. The growth rates are the
exponents of a matrix Floquet problem, and agree with those calculated by Pierrehumbert.

PACS numbers: 47.20.—k, 03.40.G c, 47.30, + s

Pierrehumbert' has recently discovered that a large
class of two-dimensional inviscid fiows with elliptical
vortex cores are subject to strong three-dimensional
instabilities with no short-wave cutoff. This discovery
is of profound importance in the theory of turbulence,
as it provides a universal mechanism whereby complex
three-dimensional motion can arise directly from
large-scale two-dimensional coherent structures. In
the last few years, it has become clear through a
number of well-documented numerical and experi-
mental studies that such a direct transfer mechanism
plays a major role in the transition to turbulence in

wall-bounded shear flows2 and free shear layers. s '
The similarity of the three-dimensional breakdown

processes in all the available examples led Pierrehum-
bert to speculate that any two-dimensional, high-
Reynolds-number flow containing an elliptical vortex
core would be subject to the same kind of instability.
He therefore considered the stability of a two-di-
mensional inviscid flow with an elliptical core near the
origin in which the velocity field could be approximat-
ed by

u(xy, z) = [(0.5+a)z, 0, —(0.5 —e)x],

where 0 » e «0.5 is a measure of the eccentricity of
the elliptical streamlines near the origin. Using a
high-resolution spectral eigenvalue solver, Pierrehum-
bert found a family of instability modes of the form

u'(x, t) = uo(px, pz)e'i'~

where the structure function uo and growth rate —i ~
are independent of the scaling parameter p as p
The maximum growth rate is a function of the eccen-
tricity parameter & only, and increases monotonically
from zero at & = 0 (rigid rotation) to roughly 0.17 (in
dimenslonless UIllts) at e = 0.4.

The object of this Letter is to present a simple
theory of Pierrehumbert s instability, clarifying its
physical and mathematical nature. I shall use slightly
different notation in order to simplify some of the
analysis. The flow that we consider will be defined

E = [(0.5+e)/(0. 5 —e)]'i
n = (0.5+.) (0.5-.). (2)

Subject to the identification (2), the results of the two
investigations are directly comparable.

When the eccentricity is E = 1, the flow (1) be-
comes a state of rigid rotation about the z axis at rate
Q. As is well known in geophysical fluid dynamics, 6

such a state supports a spectrum of inertial oscillations.
In a reference frame rotating with the fluid, the sim-
plest such oscillations are plane waves whose frequen-
cy is 20 times the cosine of the angle 8 between the
wave vector and the rotation axis. Viewed from an
inertial frame, the wave vector rotates about the z axis
at rate 0 while the wave oscillates with intrinsic fre-
quency 20 cos8. We look for a similar type of motion
in the elliptic case E & l.

The linearized equations for the evolution of a small
inviscid perturbation u'(x, t) to the flow (1) are

(8, +u Iv')u'+u' '7u= —'7p', '7 u'=0, (3)

where u;(x) =A,,x, and

A;j= OA,~,

'

0 -EO'
~= E-' 0 0. (4)

0 0 0,

We try a perturbation of the form

(u', p') = (v(t),p(t))exp[ik(r) x]

where the time dependence of the wave vector gives
rotation, etc. Then (3) becomes

le + )k)x) Uj + )k A~)x) Uj + Aj)U) Ikjp
(6)

kgUg
= 0.

everywhere by the velocity components

u(xyz) = 0( —Ey E 'x, 0), 0 & 0, E & 1, (1)

which are identical to Pierrehumbert's under a change
of coordinates, if we define
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The terms proportional to xt must cancel; therefore

k(= —kA(,
and we are left with

&g + ~y(

%e can project out the pressure term by contracting
(8) with the tensor 5,J

—k 2k;k&. Using the time
derivative of the incompressibility condition

keir~ = —k(v( = k~Apv(,

we obtain

i&1 (2k kjkj —5»)A~IuI.

(9)

Together with Eq. (7) giving the evolution of the wave
vector k(t), (10) is the basic equation governing the

v(r) e 'f(Q(r —to)), (12)

where f(P) is periodic with period 2n The Fl.oquet
exponent cr is determined by the requirement that e r
be an eigenvalue of the matrix M(2n ), where M(qb)
is a matrix that satisfies a rescaled version of (11):

k(t) = ko(sin8cosQ (t to)—,E sin8 sinQ (t —tc), cos8),

which describes motion on an ellipse parallel to the x-y
plane. The wave-vector ellipse has the same eccentri-
city as the streamline ellipses, but with the major and
minor axes reversed. The angle 8 is the minimum an-
gle between the wave vector and the z axis, and ko,
which is irrelevant to the stability problem, is its
minimum length. The delay time to is an arbitrary
quantity that serves only to specify the phase angle of
the rotation.

With k(r) given by (ll), Eq. (10) is a Floquet prob-
lem for v(t). As is well known, ' the general solution
is a linear superposition of Floquet modes of the form

evolution of the perturbation.
It is important to notice that (10) is independent of

the length of the wave vector k. This means that any
waves or instabilities that we find are completely in-
dependent of the length scale; this extends Pierre-
humbert's conclusion that the structures of the instab-
ilities are independent of length scale in the limit of
large wave number. Another important point is that
since we only used the time derivative of k v=0 in
deriving (10), its general solutions are not necessarily
incompressible, but only satisfy k(t) v(t) =const. If
we seek purely exponentially growing solutions, i.e.,
solutions that decay exponentially as t —0o, this
constant must be zero. The physically interesting solu-
tions of (10) are therefore automatically incompressi-
ble.

The general solution of Eq. (7) is

or real and reciprocals of each other. In fact, the even-
ness of q q;q& as a function of q implies that if the
eigenvalues are real and unequal, they must necessari-
ly be positive.

The instability problem thus reduces to the calcula-
tion of the matrix M(2n ) and its two nontrivial eigen-
values, which, from (13), depend only on the eccentri-
city E and inclination angle 8. If the nontrivial eigen-
values p„p, ' of M(2n) are real and unequal, with

p ) I & p, ', for given E and 8, then there exists an ex-
ponentially growing solution of (10) of the form (12),
whose growth rate is given by

~(E, 8) = (Q/2~) in&(E, 8). (14)

dMt~(P)/d$ = (2q qlq~ 5») AJ(Mim—(4)

M»(0) =5»,
with

q(@)= (sin8 cmobs, E sin8 sin@, cos8).

The vector f(@ 0) is the eigenvector of M(2n ) cor-
responding to the eigenvalue e T; for @a0, f(g) is
determined by

dI/dg=(2q 'q;qg 5,, )AJ f (y). —
Now, the average of the trace of the matrix

(2q q;q&
—5»)AJt over 0 & qh & 2m is zero, and so

the determinant of M (2w ) is umty. Also, (13) has
the property that d(q, M»)/dg-0, and hence qj(0)
= q;(0)M»(2n ), so that one eigenvalue of M(2n ) is
always unity. The two remaining eigenvalues must
then be either complex conjugates with unit modulus,

a
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FIG. 1. Important angles for 3D instability as functions of
eccentricity E. Curve a is 8~(E), the largest angle giving
instability. Curve b is e,„(E), the angle at which growth
rate is maximized. Curve c is 8 (E), the smaBest angle giv-
ing instability. Labels S and I denote regions of stability and
instability, respectively, in the E-8 plane.
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As remarked before, such a pure exponentially grow-

ing solution automatically satisfies the incompressibili-
ty constraint k(t) v(r) =0.

In fact, k(r ) .v( r ) = 0 implies that u' '7 u' vanishes
identically, so that the gro~ing Floquet mode is an ex-
act solution of the nonlinear equations. This unlimit-
ed growth is a consequence of the assumed infinite

domain of elliptical flow. In the case of a finite region
of approximately elliptical flow, the instability modes
are linear superpositions of modes of the form (12)
whose wave vectors have different delay times ro
Such superpositions are, of course, no longer exact
solutions of the nonlinear equations.

A general instability mode with wave number
ko cos8 in the z direction may be written as

f+ 2w

u'(x, r ) = e 'J', d yo A (yt)) exp[ik(iq(A r —yo) .xl f (A r —&0).

If we choose A (go) =A =const, then we obtain a
Bessel-function-like eigenmode

u'(x, r) =He 'Jl dyexp[ikoq(y) x)f(y)

which decays algebraically as ka~x~ ~. By choosing
ka large enough, we can obtain a mode localized within
as small a region around the origin as desired. The
eigenmodes found by Pierrehumbert' have an appear-
ance that is consistent with this form.

It is an elementary numerical problem to calculate
M(2n) and its eigenvalues for any reasonable E ) 1

and 0(8( n/2 Wh. en E=1, the elliptical flow
reduces to rigid rotation, and we recover the familiar
inertial-wave results. 6 The nontrivial eigenvalues of
M(2n ) for a wave with inclination 8 are cos(4n cos8)
+i sin(4n cos8), which are real and positive only

when 8=0, n/3, n/2. When E is shghtly greater than
1, only the 8= n/3 waves are destabilized, and there is
a small band of unstable waves with 8 around n/3
The band of unstable angles widens as E increases, and
the growth rate at a given 8 also increases with E.

Given E, we are particularly interested in the max-
imum value o.(E) of the growth rate, and the angle

8,„(E)at which it is attained. We are also interested
in the "neutral" angles 8+ (E) separating the stable
and unstable angles for a given value of E. In Fig. 1, I
plot 8+ (E) (curve a), 8,„(E) (curve b), and 8 (E)
(curve c) as functions of E. As expected, the curves
all originate from the point E = 1, 8= n/3. The slight
downward tendency of these curves reflects the fact
that 8 was defined as the minimum angle between the
wave vector and the z axis, while the stability proper-
ties are probably more closely associated with the aver-
age angle between the wave vector and the z axis.

In Fig. 2, I plot the growth rate maximized over 8,

~(E) = (I/2~)in~(E, 8 ..(E)),

as a function of E, taking A =1. For comparison, I
plot (with circles) the maximum growth rates found by
Pierrehumbert. In order to compare results, I have di-
vided his growth rates by the rotation rate A (a) de-
fined by (2) and plotted it against E=E(a). The
results of his spectral calculation lie very close to the
present curve, with a small negative bias that probably
reflects the constraining nature of the boundary condi-
tions used in the numerical formulation. The agree-
ment between the two sets of results is surprisingly
good, considering the completely different natures of
the analyses, and confirms the correctness of the gen-
eral conclusions.

I am indebted to R. T. Pierrehumbert for telling me
about this problem, for giving me a preprint of his
work, and for making helpful comments on the
present work. I am also grateful to S. A. Orszag for
general discussions and advice on the numerical
methods for solving the Floquet problem. This work
was supported by the U.S. Air Force Office of Scientif-
ic Research under Contract No. F49620-85-C-0026
and by the National Science Foundation.
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FIG. 2. Maximum instability growth rate as a function of

E. The curve is a (E) defined by Eq. (15), and circles are
the results of Pierrehumbert's spectral calculation.
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