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Universal Short-+ave Instability of Two-Dimensional Eddies in an Invisrid Fluid
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It is sho~n that a broad class of two-dimensional vortices occurring in the flow of an incompressi-
ble, inviscid fluid are unstable to three-dimensional perturbations. At short wavelengths along the
vortex axis the growth rate becomes independent of wavelength, and the eigenmode becomes con-
centrated near the center of the vortex.

PACS numbers: 47.20.—k, 03.40.Gc, 47.30.+s

( —icu+W'7) V+(V V)W= —Vp

( —i(o+W '7)vy= —iPp,

(la)

together with the continuity equation V. V+

ipse~

=0.
Together with suitable boundary conditions, these de-
fine an eigenvalue problem for co. Consider now
modes with cu —1 as p ~ and assume without loss
of generality that V-1. Suppose that the modes
remain smooth as p ~; then the continuity equa-
tion implies v~ 0, whence (1b) implies p 0 in this
limit. Since (la) without the pressure term reduces to
a family of independent differential equations along
each streamline of W, each eigenmode becomes con-

The observation of organized large-scale two-di-
mensional eddies in a wide variety of turbulent
flows'2 has led to a reappraisal of the fundamental na-
ture of turbulence. Moreover„ there are indications
from laboratory experiments that the breakdown of
these eddies catalyzes the transition to developed
three-dimensional turbulence. 3 Indeed, theoretical
studies have revealed that the two-dimensional struc-
tures are unstable to three-dimensional perturbations
in the case of free shear layers, 4 6 isolated vortices, 7

and wall-bounded shear flows; in the latter case, the
instability has been implicated in subcritical transition
to turbulence. These instabilities are novel in that,
apart from dissipative effects, they generate arbitrarily
small scales from a smooth basic state. 46s On the
basis of a heuristic argument and the available exam-
ples, Orszag and Patera8 speculated that three-
dimensional instabilities are a generic feature of two-
dimensional eddies. In this Letter, I exhibit a simple
construction which confirms universality and accounts
for the salient features of the instability.

Let the planar velocity field W(x, z) = ( IV„,O, 8', ) be
a solution of the Euler equations. I linearize the
three-dimensional Euler equations about this flow; as a
result of separability in y and time, one is at liberty to
assume a perturbation velocity and pressure of the
form lv(xz), p(xz))exp[i(py —~r)). Let V be the
projection of v on the x-z plane. The perturbation
equations are

centrated to a streamline; this violates the smoothness
assumption. Thus, in the limit p- ~ the eigenmodes
must have an arbitrarily small-scale structure in the
x-z plane. Upon introduction of the rescaled variables
x'= px, z'= pz, p'= pp, the equations become

( —ioi+pW V')V+ (V V)W= —'V'p', (2a)

( —ico+pW '7')up= —ip', (2t )

together with the continuity equation V' V+ iu~ =0.
V' is the gradient with respect to (x',z'). For modes
that remain smooth along streamlines, pW V' —1 as
p ~, and it is possible to have a balance at large p
in which none of the terms in (2) is negligible.

Suppose that W has a center of rotation at (0,0),
where the stream function can be expanded locally as
+= [(-,' —~)x2+ ( —,

' +e) z2)/2. I focus now on
modes that become localized in the vicinity of
x= z =0 at large p; the existence of such modes will
be verified numerically in due course. Near the origin
pW= [(-,' +e)z', 0, —( —,

' —e)x'j, VW is a constant
tensor, and hence p does not appear in the problem.
In consequence, the eigenvalues for trapped modes
become independent of p as p ~, and the eigen-
modes attain a self-similar form in which increasing p
proportionately reduces their scale without changing
their shape.

The eigenvalue problem (2) was solved numerically
in the domain lxl & 5, lzl ( 5 by projection on a basis
of Tschebychev polynomials, truncation to a finite
number of modes, and application of a standard matrix
linear-algebra package; a transformed coordinate sys-
tem was employed in order to increase the resolution
near the origin. Zero normal-flow boundary condi-
tions were enforced. These are mathematically con-
sistent though artificial, but in any event have little ef-
fect on the results as the modes in question decay be-
fore the boundary is reached. The calculations were
carried out on a Cyber-205 in 64-bit precision, with 20
modes in each direction. The growth rate of the most
unstable trapped mode is shown as a function of ~ in
Fig. 1, and the (purely real) eigenmodes for ~=0.1

and a=0.4 are shown in Fig. 2. Notably, the modes
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FIG. 1. Growth rate as a function of the eccentricity
parameter of the vortex. Circles show values for which cal-
culations were carried out.

10

are trapped near the origin as required. The modal
structure implies bending and stretching of originally
straight vortex lines into planar sinusoidal curves, and
involves both the tilting and stretching required by the
argument of Ref. 8. For a =0 the basic state consists
of rigid rotation, and as expected the growth rates van-
ish in this limit. The growth rate increases monotoni-
cally out to a = 0.4, and calculations with a approaching
0.5 (not shown because of convergence difficulties)
show no indication of the growth rates falling to zero.
This is perhaps surprising, as the limit &=0.5 corre-
sponds to plane Couette flow, which possesses only a
spectrum of singular neutral eigenmodes and does not
admit instability. The weakly nonparallel limit appears
to be a singular one, and indeed an examination of the
eigenmodes indicates that as a 0.5, the vorticity be-
comes ever more sharply concentrated on z'=0; this
tendency is already evident in Fig. 2. It thus appears
that the weak departures from parallel flow have a pri-
marily catalytic effect, allowing the disturbance to re-
tain a shape that can tap the kinetic energy already ex-
isting in the background shear flow.

The family of vortices considered by Pierrehumbert
and Widna114 is parametrized by a real number p; the
vortex with p=0.25 corresponds to a=0.3 and has
vorticity 1ja at its center. For p =0.25, a growth rate
of 0.39 at short waves was reported in Ref. 4. This is
in reasonable agreement with the value ~,ja =0.43 ob-
tained from Fig. 1, with consideration of the low reso-
lution used in Ref. 4. Also, the modal structure at
P = 2 (see Fig. 8 of Ref. 4) is consistent with that seen
in Fig. 2. Eigenfunctions for larger P were not given
in Ref. 4, but subsequent calculations with the same
code at P = 4, 8 (not shown) confirm the scaling result
derived above. My results are also consistent with the
findings of Orszag and Pateras in that (1) the instabili-
ty is confined to within an O(P ') distance of the
vortex center, and (2) the instability has zero phase
speed in the frame moving with the vortex. Unfor-
tunately, the information provided in Ref. 8 is insuffi-

FIG. 2. Contours of perturbation y vorticity in the x'-z'
plane for &=0.1 (top) and a=0.4 (bottom). Domain size is
10 units (dimensionally 10/P). Shaded areas are negative.

cient to permit a meaningful comparison of growth
rates.

For a constant-vorticity flow with exactly elliptical
streamlines, the P independence of the growth rates
and the self-similarity of the eigenmodes are exact
results which do not rely on short-wave asymptotics.
The extent to which these results apply to an arbitrary
vortex depends on the extent to which the mode is
confined to a region of the vortex within which the
vorticity can be considered essentially uniform; since
the trapping scale in the uniform-vorticity region de-
creases in inverse proportion to P, the instability as
described above is expected to occur on an arbitrary
smooth vortex at short waves with 13L » 1, where L
is some measure of the core size of the vortex. For
longer waves, the growth rate will generally depend on
P. The fact that the growth rates given in Ref. 4 begin
to level off when I3L = 1 suggests that the asymptotic
behavior is quite robust. The strength of the trapping
in the uniform-vorticity case is difficult to determine
rigorously from numerical results, but the rather slow
convergence of the eigenvalues encountered as the
domain size was increased to the value reported above
is suggestive of algebraic rather than exponential trap-
ping. Further, the neutral mode obtained as ~ 0 has
the form of a pair of stationary inertial waves which
superpose to have the radial dependence of a Ji Bessei
function, and thus exhibits algebraic decay.

With regard to the possible role of the instability in
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developed inertial-range turbulence, I remark that the
short-wave instability is not incompatible with locality
of energy transfer in spectral space: For fixed eccen-
tricity, the growth rate scales with the vorticity of the
eddy; hence, in a k si3 energy spectrum the instability
of eddies with scale k ' has growth rate scaling with
k2i3. It follows that the aggregate energy transfer into
a given scale due to instability of all eddies of larger
scale is dominated (albeit weakly) by the nearby length
scales. Seen in this light, the short-wave instability
emerges as just another cascade mechanism. With re-
gard to the transition to a developed turbulence spec-
trum, the implications are rather more novel. The
short-wave behavior of the instability implies that the
development of a full three-dimensional turbulence
spectrum does not require that energy be handed down
in a cascade from scale to scale until the dissipation
range is reached; the large eddies provide a route

whereby energy can be injected directly into the dissi-
pation range.
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