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Evidence for Scaling in Lattice QCD at 8=5.7
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The SU(3) deconfinement temperature is studied on asymmetric lattices as a probe of scaling.
For lattices with four sites in the temperature direction (8.=5.7) we find precise agreement
between the measured asymmetry dependence of the A parameter and that predicted by one-loop
perturbation theory. The agreement holds over a large range of asymmetry (0.65<¢=<1.1) and
implies that violations of perturbative scaling above 8= 5.7 are independent of asymmetry and

therefore unlikely to be lattice artifacts.

This provides evidence that the coupling range

5.7 < B8 < 6.2 is a regime of nonperturbative but universal scaling.

PACS numbers: 12.38.Gc, 11.15.Ha

The problem of locating the onset of the scaling re-
gime in lattice QCD is of fundamental importance
since it is only in this regime that one can expect to
extract continuum physics from lattice calculations.
Recent Monte Carlo studies"? of the deconfinement
temperature in pure-gauge SU(3) have shed important
new light on this issue. These studies measure the
critical coupling 8, at which deconfinement occurs as a
function of the number of sites, N,, in the time or
temperature direction of the lattice. The requirement
that the physical deconfinement temperature 7,
= (N,a)~! be independent of the lattice spacing a in
the scaling region means that these calculations can
also be regarded as a measurement of the bare cou-
pling as a function of that spacing. For sufficiently
weak coupling, this functional dependence should be
determined by the universal perturbative 8 function.?
The results"? strongly suggest that such perturbative
scaling sets in for 82> 6.2 which corresponds to
N, > 12).

For B < 6.2 things are less clear. Certainly perturba-
tive scaling no longer holds.* (Indeed, the length scale
determined by the deconfinement transition deviates
by as much as 50% from the perturbation-theory pre-
diction.) The question which then arises is this: Are
the perturbative scaling violations observed in this re-
gime still universal? If nonperturbative but universal
scaling is in effect, then, for example, a lattice calcula-
tion of a dimensionless mass ratio at 8=15.7 will give
the same value as a similar calculation at 8=6.2. Thus
it would be possible to probe continuum physics at re-
latively small values of 8, which would result in enor- |

Uy () =Ulxx+w)Ux+pux+p+r)Ux+p+v,x+v)U(x +v,x).

The matrices U (x,x + u) introduced here are, as usu-
al, N X N unitary matrices defined on the links of the
lattice.

In order to relate the results that we have obtained
on asymmetric lattices to those on a symmetric lattice,
we first need to understand how the appropriate A
parameters are related. The one-loop perturbative cal-
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mous savings in the computer time required to do any
given lattice calculation. On the other hand, if the
nonperturbative behavior observed in this regime is
due to lattice artifacts then there is no reason to expect
universal scaling, and realistic simulations must be
performed at 8 > 6.2.

The Monte Carlo calculations described in this paper
are aimed at investigating perturbative scaling and its
violation in more detail by the introduction of asym-
metry on the lattice and the study of the deconfine-
ment temperature as a function of that asymmetry.
More specifically, we choose to work on lattices with
spacing a, = ¢a along the x axis and spacing a,=a,
=a,=a along the y, z, and ¢ axes. In the universal
scaling regime, different choices for the asymmetry ¢
represent different regularization schemes, the effects
of which can be summarized by an asymmetry-
dependent parameter A. Thus if nonperturbative but
universal scaling holds for 5.7 < 8 < 6.2, then the per-
turbative scaling violations observed in Ref. 4 should
be independent of the asymmetry after A has been ap-
propriately rescaled.

The pure-gauge SU(N) lattice action for a lattice
with asymmetry along the x axis is given by’

sS(U)= 3 33’%‘—1'—{1—N‘1R6Tr[U“,,(x)”,
X, u<v y.av

1

where
B=2N/g? )
ay=¢a, a,=a,=a,=a, 3

and
4)

[

culation of the A parameter on an asymmetric lattice,
A (¢), relative to that on a symmetric lattice, A(1),
has been carried out by Karsch.’ Following the same
reasoning used in the symmetric-lattice studies of
deconfinement, this result can be reinterpreted as a
perturbative prediction for the gauge AB in the cou-
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pling B as the asymmetry ¢ and the cutoff scale a
change:

AB(¢,a)=p(¢a)—B(e=1,aq), )

where a is a reference cutoff scale introduced to regu-
late the infrared divergences in the bare coupling.

The Karsch calculation of the A parameter for an
asymmetric lattice employed the procedure developed
by Dashen and Gross® for the symmetric lattice. In
this procedure, the cutoff dependence of the bare cou-
pling constant is obtained by calculating the one-loop
effective action in a weak background field. Karsch

presents his results in terms of three-dimensional |

hu(§,a,0) = (aya,a,a) " (RSO +hSP + 1B + D), rSY (£,aa)=— SNallIVigIg

BRSO (€,a,0) =+ LNa (I + 1)1 + 1) IS,

momentum integrals. We have found it convenient to
reexpress these momentum integrals as one-dimen-
sional integrals over Bessel functions. For asymmetry
along the x axis we find

AB(¢,a)=4Nlcy, (¢,a) +cu(£,a)], (6)

where

G (€,0) = [ dal by, (£,0,0) = by (1,a0,0)]. (7)

The integrands A, appearing here receive the follow-
ing contributions from the terms Sy, S,, Sz, and St in
the one-loop effective action derived in Ref. 5 (see
also Ref. 6 and Hasenfratz and Hasenfratz’):

’

(8)

h® (¢,a,a)=+cNalla/a) 1§ Uy —13) +(a2/a2) 1§ U§ — SIS,

hiy (€.a,0) = + (N —1)/8Na21l (1§ — 1Y) + a1y (I§ — 1) 1IG I3,

where

I#(a) =exp(—2a/a})l,(2a/a}).

9

The indices o and 7 introduced here refer to the two directions orthogonal to . and v. Note also that the subtrac-
tion at the reference cutoff scale a, regulates infrared divergences present in the terms [/ ,(‘f," and [h ,‘L;‘).

The one-loop formula for AB(£,a) has the property that it can be written as the sum of two terms, one depend-
ing only on the cutoff scale @ and one depending only on the asymmetry £,

AB(£,a)=B(a)+C(¢). (10)
This may be seen by writing Eq. (7) as
c=Jdalh,,(1a) = h,(Lag) 1 + [dalh,,(&a) —h,,(1a)]. an

The first integral is obviously independent of ¢. The
fact that the second integral is independent of a fol-
lows from a change of variables « — a%a. The contri-
bution of the first term to Ag is just the familiar one-
loop B-function result,

B(a)=2bgIn(a/ay), by=11N/4872 (12)

We have evaluated C (¢) by numerical integration for
comparison with our Monte Carlo data. Our results
for the one-loop calculation are in agreement with
those of Karsch.’

The Monte Carlo calculations for 8. (£¢) were carried
out on lattices of two and four sites in the temperature
direction (N,=2,4). For the case ¢ =1 we chose the
number of sites in the spatial directions to be 2N,. For
£#1 the number of sites in the asymmetry direction
was adjusted to keep the physical size of the lattice ap-
proximately constant (N, = 2N,/¢) and thus minimize
the dependence of our results on finite-size effects.

Our procedure for determining the value of B, at
each asymmetry consisted of first locating the decon-
finement transition approximately by inspection of the
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! Polyakov line variable P (x),

P(x)=Tr[U(x,x+1) - - - U(x+ (N,—1)t,x)].

(13)
This was followed by two or three independent Monte
Carlo runs of between ten and twenty thousand sweeps
each at values of B8 spaced by increments of 0.01 and
chosen to bracket the critical value. For example, the
value B.(1)=5.676 +0.003 for a lattice with N,=4
(Fig. 2) was obtained from two independent runs at
5.67 and 5.68. The value of |(P) | was measured after
each sweep and the configuration was classified as con-
fined or deconfined. We chose |(P)|> 0.7 for N, =2
and |(P)|>0.25 for N,=4 as our definition of a
deconfined configuration. These values were chosen
to be approximately half of the value which |(P)| at-
tains just above B.. [Reasonable variations of this de-
finition result in small and fairly uniform changes in
B:(¢) and have a negligible effect on AB.] The final
result for B8, was obtained by linear interpolation to the
point where exactly half of the configurations are con-
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FIG. 1. The critical coupling 8. as a function of asym-
metry for N;=2. The solid line represents the one-loop per-
turbative result. The data points represent the Monte Carlo
results.

fined. The error bars that we quote on our data are
purely statistical and were determined by a ‘‘jack-
knife’’ procedure® in which small subsets of data are
eliminated and the remaining data reanalyzed. A more
detailed discussion of our numerical analysis will be
presented elsewhere.

The results of the Monte Carlo calculations for lat-
tices of two sites and four sites in the temperature
direction (N,=2 and 4) are plotted in Figs. 1 and 2.
Also plotted in these figures are the one-loop pertur-
bative predictions for B8.(¢). Note that, once the
symmetric-lattice result 8.(1) is given, the perturba-
tive calculation for 8. (¢) [=p8.(1) +AB(¢)] contains
no adjustable parameters. For the case N,=2 (Fig. 1)
the Monte Carlo results for the asymmetry depen-
dence of B, are in complete disagreement with the per-
turbative result. This is to be expected, since the
values of 8, here (8,=5.1) are well into the strong-
coupling region. For N,=4 (Fig. 2), the relevant
values of B, are around 5.7. From the results of Ref. 4
we know that this is still in the region where there are
large violations of perturbative scaling. In view of
this, the Monte Carlo results for 8., shown in Fig. 2,
are both remarkable and surprising. In the region
0.65 < £ < 1.1, the value of B, follows the perturba-
tive curve with great precision. Thus, after A has been
rescaled to take account of the change in regularization
as ¢ changes we find that 7, is independent of £ in this
region. To illustrate this we have plotted the depen-
dence of T, on ¢ in Fig. 3. Note that the region of per-
turbative behavior is clearly delineated at each end by
sharp changes of slope which appear to be either tran-
sitions or rapid crossovers.

Before considering possible explanations for our
data let us first reiterate the precise connection be-
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FIG. 2. The critical coupling 8. as a function of asym-
metry for N;=4. The solid line represents the one-loop per-
turbative result. The data points represent the Monte Carlo
results.

tween our results and those of Ref. 4. In that refer-
ence, the value of B8, was measured on symmetric lat-
tices with varying values of N,. Since N,a is held fixed
at (T,) !, Ref. 4 gives the change of the bare coupling
constant induced by a change of the cutoff scale,
a — \a. In our calculations, we have held the value of
N, fixed and varied the asymmetry in one of the spatial
directions. Thus, we are varying the lattice spacing in
only one direction instead of all four. In terms of the
quantity AB(¢,a), our calculations study the ¢ depen-
dence while those of Kennedy er al* study the a
dependence. Thus, although the perturbative agree-
ment that we observe is surprising, it is not incon-
sistent with previous results.

The striking agreement between Monte Carlo data
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FIG. 3. T./Ayn as a function of asymmetry for N,=4.
Agym is the same scale as used in Fig. 3 of Ref. 1.
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and perturbation theory for the £ dependence of 8. ex-
hibited in Fig. 2, taken together with the relatively
large violations of perturbative scaling in the a depen-
dence of B.,* places strong constraints on the nature of
asymptotic scaling violations in the region 5.7-6.2.
One possibility is that the agreement with perturbation
theory is accidental and does not indicate true pertur-
bative behavior. (This is the case, for example, for
the approximate, but accidental, equality of the values
of T./A, for symmetric lattices with N,=2 and 4.) On
the basis of the quality of the data and on the range of
agreement with perturbation theory, we consider this
possibility unlikely. We therefore expect similar
agreement on lattices with six, eight, and ten sites in
the time direction. (We are currently proceeding with
the N, =6 Monte Carlo study.)

If we assume that the agreement with perturbation
theory is not spurious, then we conclude that the full |

f+"/a“d4kN(k) 1
_"/ap (ga)

where N (k) approaches a ¢-independent constant as
|k|— 0. If the region of integration is separated into
|k| < e/a and |k | > e/a with € << 1, then we find that
only the first of these contributes to B(a). Thus our
Monte Carlo result that only B (a) shows nonpertur-
bative effects strongly suggests that the observed
violation of perturbative scaling in the region
5.7< B8<6.2 is not a lattice artifact, but rather an in-
dication of nonperturbative continuum physics in this
range of coupling.
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function AB has the same form as the one-loop result
[Eq. (10)], i.e., it must be the sum of a term which
depends only on a and a term which depends only on
£. Moreover, in the region 5.7 < 8 < 6.2 and for the
range of asymmetries 0.65 < ¢ < 1.1, the violations of
perturbative scaling are confined to the first term
B (a) only, while the ¢ dependence is given quite pre-
cisely by the one-loop perturbative result. This may be
more understandable if we observe that the separation
of the one-loop result into an a-dependent term and a
£-dependent term corresponds to a separation of the
momentum-space Feynman integrals into contribu-
tions of long wavelength (k << 1/a) and short
wavelength (k ~ 1/a), respectively. The term B (a)
in Eq. (10) is universal and ¢ independent because it
comes from the long-wavelength components which
are not sensitive to the details of the lattice cutoff.
The integrals which contribute to B (a ) have the form

-2
(14)

tained on the Magnetic Fusion Energy Computer
Center Cray XMP computer at the Lawrence Liver-
more National Laboratory.
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