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The formation of heavy-fermion bands is discussed on the basis of the relativistic Korringa-
Kohn-Rostoker equation. It is shown that only one specific linear combination of six local fstates
can hybridize w'ith a conduction state of given k and spin. It fol10%'s that the magnetic moments of
the heavy fermions are sharply quenched. The Wilson ratios calculated from these effective mag-
netic moments fit experimental data much better than without this correction.

X/XoR= limT-0 rri"/m 1+Ff
(2)

turns out to be quite useful. For an isolated Kondo
atom R =2 while for the Brinkman-Rice-Gutzwiller
liquid R =4. The enhancement factors for both the
Kondo atom and the Gutzwiller liquid are due to a
very similar mechanism: Namely, the local spin fluc-
tuations are enhanced relative to the noninteracting
Fermi liquid.

Anderson has suggested that the most likely source
of the attractive interaction responsible for the exotic
superconductivity in the heavy-fermion superconduc-
tors is the electron-electron interaction due to the local
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It has been commonly accepted' that some of the
heavy-fermion compounds can be described as "Kon-
do lattices. " In these compounds the magnetism of
the f-shell ion is quenched by the Kondo effect, leav-

ing behind a heavy Fermi liquid, and therefore a kind
of Landau Fermi-liquid theory is applicable. Among
these compounds, CeCu2Siz, UBei3, and UPt3 undergo
exotic superconducting transitions between 0.1 and 1

K. In earlier papers Anderson and others'2 have
pointed out the analogy between liquid 3He and the
heavy-fermion systems, i.e., that the heavy-fermion
systems can be viewed as almost-localized Fermi
liquids (Brinkman-Rice theory3). In this theory the
enhancement of spin susceptibility and that of elec-
tronic specific heat at low temperature are related by

rri' 1

Xo rn I+FtI
where X and rn' are dressed spin susceptibility and
mass, respectively, and m and Xo are the corresponding
bare quantities. Eg is the usual Landau Fermi-liquid
parameter. The Fermi-liquid theories for heavy fer-
mions all agree in the weakness of the charge fluctua-
tions and the importance of the spin fluctuations. The
basic point is that the Stoner factor in (1) takes on a
constant value in the localized spin-fluctuation theory.
To distinguish the enhancement of X due to spin fluc-
tuations from that due to mass enhancement, the so-
called Wilson ratio

spin fluctuations which determines the Stoner en-
hancement. However, one problem remains unsolved
in this spin-fluctuation picture, i.e., the discrepancy
between the predicted Wilson ratio and the experimen-
tally measured one. Various authors' in the Fermi-
liquid theory have different approaches to the spin
fluctuation and give different R. But all values ob-
tained from the spin-fluctuation models exceed unity
(R ) 1). On the other hand, if the bare magnetic mo-
ments of the U ion or Ce ion are used in Xo, the mea-
sured Wilson ratios range from 0.17 to 0.66.~ The
discrepancy is too big to ignore. Some authors5 have
taken this discrepancy as evidence that the spin-
fluctuation theory does not apply to the low-

temperature properties for heavy fermions, at least for
CeCu2Si2. To reconcile this discrepancy, Brown,
Bedell, and Quader6 argued that the magnetic mo-
ments of the f electrons can be lowered by hybridiza-
tion as well as by the exchange Coulomb interaction.
But they ignored the effect of hybridization on the
magnetic moments of the Bloch electrons. Thus, their
mechanism is quite different from the one proposed
here. Theirs is essentially a two-band model, which,
we have argued elsewhere, ~ is a fundamentally in-
correct picture. The present work is intended to settle
the important issue of the Wilson ratios.

We start from the Nozieres Fermi-liquid descrip-
tion for the single Kondo-impurity problem and treat
the Kondo-lattice problem within the Korringa-Kohn-
Rostoker (KKR) scheme. On the basis of a relativistic
KKR equation which takes spin-orbit coupling into ac-
count, the hybridized heavy fermion bands are derived
and the quasiparticle wave functions are obtained. It is
found that only one specific linear combination of lo-
calized f states can hybridize with a conduction state
for a given k and spin, and the quasiparticle band
remains twofold degenerate as is required by the Kra-
mers theorem. We will also work out the magnetic
moment (i.e., g factor) of the quasiparticle as a func-
tion of k By averaging over the Fermi surface we will
explicitly show how the magnetic moments of the
heavy fermions are severely quenched. The modified
Wilson ratio using the effective magnetic moment is
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compared with experimental data, and fairly good
agreement is achieved. It is important to recognize
t.hat theories based on the Nozieres picture are one-
band theories, in which one should think of the heavy
electrons as renormalized free electrons, not f elec-
trons. This point is obscured in Ref. 1.

Suppose we have solved the single Kondo-impurity
problem in the sense of the Nozieres Fermi-liquid pic-
ture: Well below TK the impurity spin is frozen into a

singlet. The effect of the spin on the conduction-
electron state is characterized by phase shifts 5 (~).
Because of virtual hopping to and from the impurity
site, an indirect local interaction between quasiparticles
appears (reminiscent of the local spin-fluctuation
theory). Nozieress shows that near the Fermi surface,
the phase shift for a spin- —, impurity can be written as

5~(6) =
2

VT + A (6 —EF) + iT mf (3)

where n=1/TK. (We will make the obvious generali-
zation to larger J shortly. ) The last term is the
"molecular field" term due to the local spin fluctua-
tions. We can ignore it when we concentrate on the
single-particle properties such as the formation of the
quasiparticle bands. It is responsible for the deviation
of the Wilson ratio from 1 in the simple theories. Now
we simply take over what is known about the impurity
problem and put impurities together into a lattice. The
electrons can then coherently scatter off of the period-
ic impurity array and form coherent Bloch states.
Since the impurity atoms are far apart from each other,
we expect that a "muffin-tin" approximation is fairly
accurate. The simplest picture one can imagine is that
the scattering potential at each impurity site is nonzero
only within a muffin-tin radius p, which is taken much
smaller than the lattice spacing, and that the electrons
propagate freely outside the muffin-tin sphere. The
phase shift 5(~) contains all the information about the
potential scattering on the f-shell atoms. This simple
picture enables us to do a formal band calculation us-

ing the KKR method. This approach is well known for
transition metals, and was used by Razafimandimby,
Fulde, and Keller9 to treat the Kondo-lattice problem.
They ignored the spin-orbit coupling, however, which
is very important for heavy fermions. We think in
terms of CeCu2Si3 or UBet3 where the pseudopoten-
tials of the majority of the atoms are very weak and
only the f-shell atom makes the compound differ~

severely from a nearly free-electron metal.
Under the muffin-tin approximation, the reciprocal

lattice representation of the KKR equation is the most
convenient for our purpose. This version of the KKR
equation was first developed by Ziman'0 for nonrela-
tivistic band calculations. We generalize it to the fully
relativistic situation. The resulting equation is

k„' Bg(ns)Bg(n's')
det e — 5,5,+

2m "" ~ z 2mK cot(gx )
=0, (4)

det
m

V'(M) V,, (M)—e 5
nn ss'

60 —6M

with V~(M) = (I /2mK)'l 83M~, M= —', , . . . , ——,'.
The pseudopotential term in (6) is highly energy
dependent near eo. Following Heine, " we can
transform Eq. (6) into a hybridization model:

k'/2m —~

det 0

1(eo —e)
=0,

where

where k„=k+G„, the G„being reciprocal lattice vec-
tors,

B~(ns) = QL(lm ,
'

s~ —', —M)
"

Yi~(k„),
Q JI Kp

(5)

q~ is the modified phase shift given by cot71~ = cot5&
—ni(Kp)/jI(Kp), K =We, and ~ is the energy mea-
sured from muffin-tin zero. ( lm —,

' s ~

—', M) is the
Clebsch-Gordan coefficient for spin-orbit —coupled
states J = —,', L = (l, m), It'= (l, M) As d. iscussed
above, the phase shift 53(~) behaves like cot53 ('EF
—e)/I, I = TK. The modified phase shift q~ is not
quite the same as 5K, but we assume that it behaves
somewhat similarly to 53 with a displaced resonance
position ~O=~F=I n3(Kp)/j3(Kp): coty' = (60 —t)/
I". Other partial waves are expected to be non-
resonant, i.e., to have a very weak pseudopotential
which we have set equal to zero. Substituting the
modified phase shift into the pseudopotential term in

(4), we get

=—Vt(M) = — [(—,')'l'Y (k), ( —,')'l'Y (k), . . . , ( —,')'l'Y (k)1,

P=—Vt(M) = ol( —', )'l'Y (k), ( —,')'l'Y (k), . . . , ( —,')'l'Y, ,(k)],
(8)

and 1 is a 6X 6 unit matrix.
In (7) we have decoupled the n = 0 plane wave from the higher plane waves at the expense of renormalizing the

mixing matrix elements a, P as well as the local resonance. " However, the corrections to a, P, and the local reso-
nance are of order V, which is very smail in the weak hybridization limit. Thus we can keep only the terms linear
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in V in the secular equation (7). One can easily show
that a and P satisfy the symmetry relations

l~l'= Ipl'= 4'
where ~o is proportional to JTq. With the help of
(9), Eq. (7) is readily diagonalized, giving rise to a set
of hybridized quasiparticle bands. In general, we
would get complicated bands because of the energy
dependence of no. Fortunately, we are only interested
in the band structure near the Fermi surface. So we
are allowed to ignore the energy dependence of ao in
determining the quasiparticle wave functions and we
obtain the following hybridized bands:

~+(k) = —,
' [~k+ ~o + [(~o—~k)'+4~'1' '].

The result is the same as those derived by the
Gutzwiller method or functional-integral method. '2

The point we want to make is that out of the six local-
ized f states only one specific linear combination can
mix with a conduction state at a given k and spin. To

!
make it clear, we work out two degenerate wave func-

tions corresponding to energy e (k):
M = —5/2

y„' '=~ lk] }+ g ~~(k)i-', ,M},—
6O

(1 la)
M = —5/2

y.' '=& Ikj}+ $ P (k)l —', ,M},—Eo

(»b)
where p, and v are pseudospin indices. A is a normali-
zation constant given by A = [I+a /(e —eo) ]
The degenerate wave functions Q~ ~ and ft ' are ob-
viously orthogonal to each other because of Eq. (9), as
a consequence of the Kramers theorem. As a matter
of a fact, we could have gotten the same result from
the periodic Anderson model including spin-orbit cou-
pling, in which the mixing matrix element is of the
form, V~ (k) —Y3~ (k) (3lM —o, —,

' a I —,
' M}. In

the spirit of the Gutzwiller approach, "one can get rid
of the large U term in the periodic Anderson model,
which amounts to a renormalization of Vand the local
resonance energy. Upon replacing V and the local
resonant energy by their renormalized values, one gets
an effective Hamiltonian of the form

H,rr= X~(k)Ci, Ci, +coMf~+ X [ V~ (k) f~Cg +H.c.].
kcr Sf IkMcr

(12)

~(k)=,—/~M«)PM«)M
(~- —~o)' 7 ~

(13b)

Actually one has to consider the Van Vleck-type
terms in general and calculate thc interband matrix
elements. But in our case they are relatively negligible
because of the small phase space or large energy
denominators. The eigenvalues of p, „p, are easily
obtained as functions of wave vector k, p, (k)
= + (po2+ IA. I2)' 2. Although in our model thc Fermi
surface is isotropic, the magnetic moments of the
quasiparticles on the Fermi surface have a strong an-

Equation (12) is a single-particle Hamiltonian. Diago-
nalization of Eq. (12) yields the hybridized bands (10)
and the wave functions (1 la) and (1 lb).

Now we want to show the suppression of the mag-

netic moments of the heavy fermions using the wave

functions (1la) and (lib). If we assume that we have

a very weak magnetic field along the z axis which pro-

vides us with a quantization direction, the z com-

ponent of the magnetic moment is then p, ,= I, +2S,.
Let the diagonal parts of p, „within the bases (lla)
and (lib), be p, o and —p, o, the off-diagonal pieces A.

and A. '. A straightforward calculation gives

po(k) = ~' 1+,7XI~~(k) I'M
~ (13a)

1

~- —~o

isotropy. In order to get an effective magnetic mo-
ment, one has to make an average over the Fermi sur-
face. Let us calculate the Pauli spin susceptibility:

N ('EF )p eff where W' ( &F) is the renormalized
heavy-fermion density of states, and p.,rr is defined as
the effective magnetic moment of the heavy fermions
by

p' =(4n. ) ' dA[p, o2(k)+ IA. (k)I2]. (14)

(15)

Thus 1/(1+ Fg ), the interaction part of the Wilson ra-

The calculation of the integral in Eq. (14) is lengthy
but rather straightforward. The result'3 depends upon
the parameter x= ~y~'(~ —~o), which is to be deter-
mined. It turns out that x is approximately the
enhancement of the density of states: X'(eF)
= Wo(eF)n /(~ —~o) . For the compounds that we
are discussing„x & 1000 » 1, the terms with x in
Eq. (14) dominate, and one has p, 2ir=1.16@,a2. The
bare magnetic moment for the f' valence state is

p, o
= 2.54@,a, and therefore (p,,ir/p, o) 2 = 0.18. This

shows that the effective magnetic moments of the
heavy fermions are severely quenched. The modified
Wilson ratio is given by

T

1 0.18

po 1+Fg 1+Ff
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tio, is

1

1+F$
= 5.568,t„& 1.R

Petr Po
(16)

In conclusion, we have discussed in this Letter the
formation of heavy-fermion bands on the Kondo lat-
tice based on the relativistic KKR equation. It is
shown that, in the presence of spin-orbit coupling,
only one selected linear combination of six local f
states can hybridize with a conduction state of given k
and spin. This is not a new or unexpected result in
band theory but has been ignored in previous theories
of this problem. One of the consequences following
from this property is that the magnetic moments of the
heavy-fermion quasiparticles are sharply reduced. As
a consequence the observed susceptibility is much af-
fected by Fermi-liquid interactions, implying a Wilson
ratio & 1 as expected. The fact that the moment
comes out comparable to that of the f-electron spins in
the Curie-law regime, while not unexpected, comes
from the many-body interactions between the quasi-
particles in the coherent regime near T= 0, not from
their intrinsic moments. We note also two other
relevant consequences of our theory: (i) The form
factor of the moment is almost purely f-like as ob-
served, because x » I, and (ii) the Fermi surface is
almost free-electron-like, in spite of the large renor-
malization.

It is important to recognize that the model we use is
oversimplified, specifically in not containing crystal-
field splitting or realistic band structures for such sub-
stances as UPt3. We believe that a large correction to
R applies in all cases, but our calculations apply to the

symmetric J= —', case only.
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