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Self-Consistent Dynamolike Activity in Turbulent Plasmas
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The evolution of turbulent plasmas is investigated within the framework of resistive magnetohy-
drodynamics. The functional form of the mean electric field is derived for fluctuations generated
by tearing and resistive-interchange modes. It is sho~n that a bath of such local and global modes
in pinches causes toroidal field reversal with finite pressure gradients in the plasma.
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It is widely believed that sustainment of a mean
magnetic field in a turbulent plasma in spite of the de-
cay caused by resistive diffusion is due to the genera-
tion of a mean electric field by the plasma fluctuations.
The phenomenon, known as the dynamo effect, ' has
been invoked to explain the observed lifetimes of
magnetic fields in astrophysical and laboratory plas-
mas, a particularly interesting example of which is the
reversed-field pinch (RFP).2 In the RFP, the plasma
is observed to relax into a state in which the toroidal
field is reversed near the edge, and remains in that
state for times longer than can be accounted for by
classical resistive diffusion alone. Evidence of such a
phenomenon has also appeared in numerical simula-
t1OQS. '

In this Letter, we give a self-consistent and quantita-
tive description of the mean electric field F generated
by resistive magnetohydrodynamic (MHD) turbu-
lence. We consider a wide class of resistive modes,
global as well as those localized on field lines, and
show that F must satisfy two important global proper-
ties which restrict the functional form of F)~, the com-
ponent parallel to the mean magnetic field 80. This
form is

F(( =80 2Bo')7 (K '7i). ), (I)
where i). = Jo Bo/Bo2 (Jo=')7xBo is the mean current
density) and x is a spatially varying, positive function.
From a model of linear tearing modes, we derive an
explicit expression for tc . We emphasize, however,
that the realm of validity of the functional form (1) is
considerably greater than that of the model calculation.
Rather remarkably, it encompasses the calculations of
F~~ in the work of Jacobson and Moses and Strauss,
which differ from the model presented here and from
one another, and yet obtain similar results up to dif-
ferent realizations for tt2.

From a model of nonlinear, resistive-interchange
modes, s 9 we give an exact expression for Fi by ex-
tending the similarity method developed in Ref. 9.
(We believe that this is the first exact, nonlinear, self-
consistent calculation for F„ in the literature. ) Com-

bining F)) and Fi, we show that steady-state solutions
in an RFP plasma driven by an external electric field
show toroidal field reversal, generally in the presence
of finite pressure gradients. In particular, the Woltjer-
Taylor'0 " force-free state J = )).oB is obtained as a spe-
cial limit of our theory.

To fix ideas, we consider an incompressible plasma
inside a perfectly conducting cylindrical shell (aligned
with the z axis), to which the velocity and magnetic
fields are tangential. All mean quantities depend only
on the radius r, and the mean magnetic field lies on
surfaces r =const. (A generalization of the following
results to compressible plasmas will appear elsewhere. )
Superimposed on the mean fields are small fluctua-
tions of zero mean, denoted by subscript 1, and vary-
ing on a faster time scale and a shorter length scale.
We will use the following assumptions: (1) The mean
state, containing only small flows induced by dif-
fusion, evolves on a resistive time scale and varies spa-
tially on the scale of the minor radius a of the cylinder,
i.e., a lv I

= O(g), aa/at = O(q), a I 71=O(1); (2)
the energy of the fluctuations, be it magnetic, kinetic,
or thermal, is smaller than the mean magnetic energy,
i.e. , IBil', plvil', Ipil &( IBpl; and (3) the fluctua-
tions vary on a smaller space scale and a faster time
scale than the mean quantities, i.e., a 6/cit » O(q),
a I V I » 0 (1). We note that since Ji = '7 x Bi, the
fluctuating current may be large; we allow a IJi I/IBt)l
= O(1). Averaging Ohm's law, tiB/Bt+'7x (qJ —v
xB) =0, where v, B, and J are respectively the total
velocity, magnetic field, and current density, we get

BBO/Bt+'7x (gJo —F) =0, F= (vixBi). (2)
The average may be viewed either as average over an
ensemble, or as a space-time average over the scales of
fluctuations. We note that vo does not enter Eq. (2)
because of incompressibility. We now state the two
theorems concerning F as follows: Theorem I,

J d~v )0 —j»n&J,') ~0=o(q).
Theorem II,

J d7 F So=0, to O(q).
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The integrals are taken over the volume of the plasma. We point out that though these theorems have been as-
sutned to hold elsewhere, ours is the first rigorous demonstration, from dynamical considerations, of their validi-

ty.

Theorem I may be proved by averaging at first the energy equation

tl( —,
' B'+ —,

' pu')/Bt+'7 [ ,
' p—u'v+pv+ (qJ —vx B) &&B]+qJ'=0

(p is the density and p is the plasma pressure), and

keeping terms to O(q). We get

a ,'B-p2/et= -~Jp -~(J,')+V c, , (4)

where ci represents an energy flux. Now, «om Eq.
(2), we get

8 2 Bp2/r) t =F ' Jp v] Jp~ + '7 c2.

The surface integral f (c, —c,) ndS represents the
energy fiux due to fluctuations which, for a perfectly
conducting wall, vanishes. From (4) and (5), theorem
I follows.

Theorem II may be proved similarly by an averaging
of the exact helicity equation (with B= '7 && A)

a(A B)/at+2qJ B+'7 c =0,

linear tearing modes, for which the reader is referred
to Coppi, Greene, and Johnson. '3 We envision the
fluctuations to be due to many tearing modes, each
resonant on some magnetic surface, and ignore the
nonlinear interaction between them. The mean fields
now represent equilibrium fields, and the fluctuating
fields are the linearized perturbations. For a particular
mode with the dependence exp[qt+ik r], k=kz
+ m8/r, the dominant contribution to the average
quantity F comes from the resonance layer k Bp=0
where the radial gradients are large. Outside the layer
the mode behaves ideally, with zero contribution to F.
From the considerations leading to theorem II, it is
seen that to leading order F Bp= —'7 ((Ai Bp)vi),
which can be shown'3 to equal

where c3 represents a helicity flux. From Eq. (2) and
the corresponding dynamical equation for Ap, we get

iBp2
((r B,)(r v, ))r .

rxk Bp
(8)

B(Ap Bp)/Bt+2(gJp —F) .Bp+'7 c4=0.

I (c3—c4) * n dS represents the helicity flux due to
fluctuations which again vanishes. From (6) and (7),
we obtain theorem II.

Theorem I implies that F does negative work on the
plasma, and is thus a dissipative force. It accounts for
the Ohmic losses due to the fluctuations. We now

give a heuristic derivation of the functional form of F~~

given by Eq. (1), also derived independently in Ref.
12. From theorem II, we may write F~~

= IBpl Bp&
g, where f.r=0 on the plasma boundary. (We note

that, in addition, '7 g itself vanishes, as Fp must, on
the perfectly conducting wall. This condition will be
shown to be immaterial when we deal with the numer-
ical calculation given later in the paper. ) For a nearly
force-free plasma, theorem I now implies f g 'vtlidr.
&0, A, =Jp Bp/Bp2. We envision the turbulence as

generated by a bath of resistive modes, where it is
known that each mode behaves nonideally only in
the vicinity of some resonant magnetic surface. The
contribution to mean quantities such as j comes only
from the vicinity of the surface. Therefore j ( '71'.

& 0 should be satisfied by the integrand itself being
positive, which leads us to expect that )=~2'7A. ,
where ~2 is a positive function. Thus, Eq. (1) follows.
(Special realizations for K appear in Ref. 6, in which a
kinetic model is used, and in Ref. 7, based on a quasi-
linear theory. )

%e no~ strengthen this heuristic argument by ex-
plicitly deriving F~~ from the dynamical equations of

To leading order, r" Bi is constant throughout the
layer, '3 and we may rewrite Eq. (8) as F Bp= —V

[v]r 2By~gp, 'Q(+p )r], where p, = rB,p/Bop, primes
denote r derivatives, and the notation is the same as in
Ref. 13, where Q, +p, and: are the scaled growth
rate, the radial components of Bi, and the displace-
ment vector, respectively. The average is now inter-
preted as an integral over the dimensionless inner-
layer variable. Since +p=const, only the even part of
= contributes. A solution for the even part of: fol-
lows closely the derivation of the odd part in Ref. 13.
We finally obtain

F Bii='7 [O.qBp2A. 'r],

where n = Q 't Il'p f(p, '), and f(p, ') is some positive
function. n has the dimensions of length squared, and
depends on the global equilibrium profile through the
mode amplitude %'p, and Q, both of which depend'3 on

It is easy to see that a is proportional to 8 /L2,
where W is the island width' and L is the resistive
layer width. To get o of order 1 the mode must cer-
tainly be in the nonlinear regime. Nevertheless, our
linear analysis yields the correct dependence on A. ',
predicted more generally by the heuristic argument.
In a model calculation, such as the one presented later
in the paper, o. is taken to be noa2, ~here o.o is a posi-
tive constant.

The tearing-mode model may also be used to calcu-
late Fi. The calculation, however, is much more tedi-
ous and seems unprofitable for linear theory. It is
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more rewarding to derive an exact expression for F for
nonlinear interchange modes using the similarity
method developed in Ref. 9, which we extend and
correct as follows .We use local coordinates (x,y, H)
where x = (r —ro) p, '/ro, y = (z p,—H)/ro. Fluctuations
vary rapidly in x and y but slowly in 8; that is,
'7~ —O(5 ') and '7~~ —O(1), where 5 —q't T. he
primary correction to Ref. 9 stems from the relation
pi + Bo Bi = 0 which follows from 0 (1) terms in
the momentum equation pdv/dt = —'7(p+ —,

' 82) +B

'7B. We thus represent Bi = '732 x n —p, n, vi
= —'7@2xn+A, n, where n=BO/~B0~. (From now
on we drop the subscript 0.) Equations for A2 and $2
may be obtained, in the manner of Ref. 9, by collect-
ing 0(&) terms of the induction and the momentum
equations. An inconsistency in the equation for p, of
Ref. 9 may now be cured by deriving it from the pro-
jection along Bo of the equation for Bi. We quote here
the main results; details will appear elsewhere. The
relevant equations are

d4 B@ 1 8
d BH S 8 (10)

8 BA

Bii By

dp+~ 8 B4 1 8 ~ + 8 BA BA BA Bg BA
8, By S 8, ' + 8, Bx By By Bx Be

dA BP 8 BP BA BPB& +&d7. BH Bti Bx By By Bx

4 Be B@

p 8 By'

where the notation is the same as that of Ref. 9, with
the exception that the natural parameter P=2p/82
replaces the parameter P+ of Ref. 9 and A

=~plBOIAi/p. For the resistive g mode, further
reduction of Eqs. (10) through (13) is given in Ref. 9.
These equations may be shown to be invariant under a
family of transformations. As shown in Ref. 9, these
transformations determine exactly, to the extent of
dimensionless constants, local transport coefficients.
The same method yields the expression

Fi = —Po'rt
2 2 2

r&&B, (14)8 Bop

where Po is a constant, and should be positive for
p' & 0 in order to conform with theorem I. We note
that F~~ =0 for these localized modes, and that we
have ignored the radial component of F, which can be
determined, of course, but does not contribute to Eq.
(2).

We now present a model calculation for the relaxed
state in an RFP plasma under the influence of a bath
of resistive modes, with tearing modes contributing
primarily to F~~ and resistive g modes to Fi. The re-
laxed state is given by qJ —F= Ez, where the constant
E is the applied toroidal voltage per unit length intro-
duced through a fictitious cut in the wall, and F is
given by Eqs. (9) and (14). We thus investigate solu-
tions of the equation

J —no '7 (a282'7h. ) +po p i& B=—z.82 82 jp2 t2

(15)

The pressure is determined for given B from the
equilibrium equation (p+ —,'82)'+Bt2i/r =0. We note
that the tangential component of F derived from Eqs.
(9) and (14) does not vanish at the wall in contrast
with the boundary condition on a perfect conductor.
As we have seen, the contribution to F comes from a
thin resistive layer in its vicinity. The layer equations
are valid at most a distance of a typical layer width
from the wall. We choose not to describe the details
of this boundary layer near the wall over which the
tangential component of F should vanish rapidly. The
only boundary condition left to impose is A. '=0 at
r = a, in conformity with theorem II.

Two observations are in order. First, if no=0, no
solutions with toroidal field reversal are possible. The
reason is that the 8 component of Eq. (15) is of the
form 8,'+ fB,=Q, f«0, which implies that 8, de-
creases exponentially from the center, but never van-
ishes. Second, large no and Po imply that li.

' = 0 (no ')
and p'=O(PO ' ), and correspond asymptotically to
J = &OB, with &0 = const. The Woltjer-Taylor state is
thus a limiting case of Eq. (15). We note, in reality,
that the plasma pressure will be determined by addi-
tional loss mechanisms, most importantly by anoma-
lous electron heat conduction and also by radiation,
which have to be modeled separately.

The steady-state Eq. (15) was solved numerically,
and extensive results will be presented elsewhere. We
normalize 8, to the volume-averaged 8, (8,), p to
8~, r to the minor radius a, and E to B,q/a. We re-
mark that nonzero values for both no and Po are in
general necessary to obtain profiles in accord with ex-
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1.0

and resistive g modes, respectively, and (c) description
of relaxed states in ZT-40 under the influence of F.
We reiterate that F is a dissipative force, has little in
common with a conventional "dynamo, " but is
nonetheless sufficient to explain field reversal in
RFP's.
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FIG. 1. The pressure and 8, profiles are shown for eo,
P0-0, 50 (dashed lines) and 20, 50 (sohd lines). In both
cases Eo 12.

perimental observations on ZT-40. While the dom-
inant effect of po causes B, to decay exponentially
from the center, a finite value of &0 is necessary to ex-
plain reversal of B,. This is seen in Fig. 1, where the
dashed lines describe the pressure and B, profiles for
no = 0, Po = 50. The corresponding profiles for
aq=20, p0=50, represented by solid lines, show re-
versal of B, near the edge typical of sustained ZT-40
discharges. In both cases the scaled electric field is

Eo = 12.
We conclude with a summary of the principal results

of the paper: (a) the rigorous derivation of theorems I
and II, which imply the functional form (1) for F~~,

(b) dynamical calculations of F~~ and Fi due to tearing
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