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We report a new approach to the study of electron spectral clustering and wave-function scaling
in several one-dimensional quasiperiodic systems. The approach is based on renormalization-group
ideas. We introduce a novel decimation technique which generates a simple physical picture of the
electron spectral behavior and the nature of the wave functions. Our renormalization-group
scheme is verified by the numerical computation of the probability density summed over the states
belonging to the clusters and subclusters of the spectrum.
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Recently, there have been a number of studies of
phonon and tight-binding electron models on one-
dimensional (1D) quasiperiodic (QP) lattices, motivat-
ed by the discovery!-2? of the quasicrystal phase. Now,
such studies become directly relevant to experiments
because of the actual construction of a Fibonacci su-
perlattice of GaAs-AlAs by Merlin er al>

In this Letter, we report a new approach to the study
of spectral clustering and wave-function scaling in
several 1D QP systems. The approach is based on
renormalization-group (RG) ideas. A main virtue of it
lies in the introduction of a novel decimation tech-
nique which generates a very simple and intuitive
physical picture of the spectral behavior and the nature
of the wave functions.

We will concentrate our attention on the tight-
binding electron model defined by t,,+1¥,4+1
tlyn-1¥p-1 €, =EY,, where €, and ¢, are
respectively the site energy and the probability ampli-
tude at the nth site, while t,,41=1t+1,,=1T, is the
hopping transition amplitude associated with the bond
between site n and site n + 1. Three simpler cases will
be considered. In case (A), the site energies €, are
constant (which will be absorbed into the eigenenergy
E), and the bonds take two values, T, (strong) and T,
(weak), arranged in a Fibonacci sequence. This se-
quence is generated? by repeated applications of the
substitution rule 7,— 7,7, and 7T,— T,, starting
from the initial sequence S;=7,. Therefore,
S=T,T, $=T1,T,T,, S4=T,T,T,T,T,, and so on.
Case (B) is the same as (A), but with the interchange
T,(Z)T,. In case (C), the bonds are constant,
T,=T, but the site energies take two values, V| and
V,, arranged in a Fibonacci sequence.

The above models were recently proposed and stud-
ied by several groups.*® They found self-similar
structures in the spectrum and the wave functions. In
this work, we introduce a RG analysis, which directly
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relates the self-similarity of the spectrum and the wave
functions to that of the underlying lattice. In addition,
the behavior of each wave function can be simply re-
lated to the position of its energy in the hierarchical
structure of the spectrum. The theoretical prediction,
made in Ref. 4, of the existence of many localized
states located in gaps has been experimentally con-
firmed.® The scaling behavior of the localization
length of these states can also be analyzed by our RG
approach, but this will be presented in future publica-
tions.”

Consider first the case (A), for which Fig. 1(a) is a
typical plot of the energy spectrum. One of the goals
of our RG, as described below, is to explain the trifur-
cating pattern exhibited in the spectrum.

In the following, we describe the RG procedure for
this case. In the absence of the weak bonds (7,,=0),
the Fibonacci lattice is broken into isolated sites
(atoms) and double sites (molecules). The spectrum
then consists of three infinitely degenerate levels:
E =0 for the atomic states and £= + T for the bond-
ing and antibonding molecular states. As we take the
weak bonds into account, these states are coupled to-
gether. However, the dominant effect is the resonant
coupling among the states of the same energy.

We can construct an effective Hamiltonian’ within a
given degenerate level. The elimination of states out-
side this level produces effective couplings among the
degenerate states. As an approximation we will only
keep the first two leading terms. Energy shifts of the
same order as the smaller term kept in the effective
couplings can occur and can be taken into account.
However, they will be ignored here in order to simplify
the description of our RG.

For the level E =0, the renormalized lattice consists
of the atomic sites in the original lattice. These sites
are connected by the effective bonds — T2/ T, and
T3/ T,z. The former is for atoms separated by one
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FIG. 1. Energy spectrum of our model in the three cases, (A), (B), and (C), specified in the text. The eigenenergies are
plotted from left to right in increasing order. The lattice has 987 sites and fixed-end boundary conditions. (a) Case (A), with
T,=1and T,=S5; (b) case (B), with T,,=1 and T,=5; (c) case (C), with T=1, V;=—5,and V,=5.

molecule in the original lattice, while the latter is for
atoms separated by two neighboring molecules. These
bonds are arranged in a Fibonacci sequence, so that
the structure of the new lattice is the same as its moth-
er lattice (see Fig. 2). The associated probability den-
sities, defined below, are shown in Fig. 3. For the lev-
el E=T,, the basic units of the renormalized lattice
are the bonding molecular states in the unperturbed
original lattice. These units are connected by the ef-
fective bonds T,/2 and T2/27,. The former is
between the bonding states of neighboring molecules
in the original lattice, while the latter is for the bond-
ing states of molecules mediated by an atomic site.
Again, the arrangement of the bonds is a Fibonacci se-
quence, which gives the new lattice the same structure
as the original one (see Fig. 4). Finally, for the level

=—T,, we have a new lattice of antibonding
molecules. The bonds are — 7,/2 and T2/2T, ar-
ranged in a Fibonacci sequence. This completes the
first step of our RG analysis.

In the second step of our RG analysis, we first re-
move the weaker bonds in the new lattices obtained in
the first step. We are then left with the isolated units
(superatoms) and bonding and antibonding double
units (supermolecules). The three levels £=0, + T,
are then each split into three sublevels. For each of
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FIG. 2. Schematic representation of the decimation pro-
cedure favoring the atomic sites. The double (single) lines
denote the strong (weak) effective bonds. The molecules in
(a) are eliminated, producing the renormalized chain in (b).
Eliminating the new molecules, we obtain the renormalized
chain in (c).
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these sublevels we can construct a Fibonacci lattice,
using the method of resonant coupling.

This procedure continues on and on, and eventually
we obtain a spectral pattern of three main clusters
(bands), each of which consists of three subclusters
(subbands), and so on. In general, the middle cluster
(or subcluster) is narrower than the side clusters by a
ratio of order 3TW/TSI. This explains the trifurcating
structure of the spectrum found by Nori and Rodi-
guez* [also see Fig. 1(a)].

It must be emphasized that our RG approach is only
exact in the limit of |7,/7,| << 1 [in cases (A) and
(B)] or | T/(V,—V,)| << 1 [in case (C)]. However,
as can be verified from the numerical results of Ref. 4,

(c)

(o] o 2.60 o
Position Along Chain, n

FIG. 3. Probability density, P,, vs site position, n, along
the chain. In (a)-(d) the probability densities have contri-
butions from the states belonging respectively to (a’), (56'),
(¢'), and (d’), where (a’) denotes the central main cluster
of states around £=0 in Fig. 1(a), (4') the central subclus-
ter of (a’), (¢’) the central subcluster of (b), and (d’) the
central subcluster of (¢').
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FIG. 4. Schematic representation of the decimation pro-
cedure favoring the bonding molecular states. The double
(single) lines denote the strong (weak) effective bonds. The
isolated atoms in (a) are eliminated, producing the renor-
malized chain in (b). Eliminating the isolated atoms again
obtain the renormalized chain in (¢).

even |T,/T,/=0.5 can be regarded as << 1, for the
purpose of giving qualitative predictions. When
| T,/ T,| <0.2, predictions about the widths of the
clusters become very accurate [see Fig. 1(a)]. Also, as
the energy shifts due to renormalizations are included,
even the positions of the clusters can be determined
fairly well.

In order to verify the results of our RG approach
further, we plotted the probability density (PD),
P,= Esld;,f’)lz, summed over the states belonging to
certain clusters and subclusters in the spectrum; n
represents the site position along the chain. In Fig.
3(a), the PD over the central cluster is plotted as a
function of n. The PD is uniformly peaked on the iso-
lated sites, which corresponds to the renormalized lat-
tice obtained in the first step of our RG analysis for
the £ =0 level. The PD over the central subcluster of
the central cluster [Fig 3(b)] is uniformly peaked on
the sites corresponding to the superisolated atomic
states in the second step of our RG analysis. As we
narrow the range of the spectrum towards the center,
we see a very clear hierarchical structure in the succes-
sive PD’s [Figs. 3(c) and 3(d)], exactly corresponding
to what the RG suggests. On the other hand, as we
plot the PD’s over the top cluster [Fig. 5(a)], top sub-
cluster of the top cluster [Fig. 5(b)], etc. [Figs.
5(c)-5(e)], we see another type of hierarchical struc-
ture corresponding to the bonding molecular states,
bonding supermolecular states, and so on. [t is impor-
tant to note that the lattices of Figs. 2(a), 2(b), and 2(c)
correspond to the PD’s of Figs. 3(b), 3(c), and 3(d),
respectively. Also, the lattices of Figs. 4(a), 4(b), and
4(c) correspond to the PD’s of Figs. 5(c), 5(d), and 5(e),
respectively. The exact correspondence between them
is remarkable.

The scaling behavior® of the wave function at £=0
can be readily obtained from our RG analysis. First,
this state belongs to the central cluster of the spec-
trum, so that the wave function should be primarily
peaked on the isolated atoms. The strength of the
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FIG. 5. Probability density, P,, vs site position, n, along
the chain. In (a)-(e) the probability densities have contri-
butions from the states belonging to (a’’),...,(e")
respectively, where (a’’) denotes the top main cluster of
Fig. 1(a), (") the top subcluster of (a’’), (c¢”) the top
subcluster of (5”’), and so on.

wave function on the isolated atoms should be | T,/ T, |
times the strength on the molecules. Second, this
state also belongs to the central subcluster of the cen-
tral cluster; therefore the strength on the superisolat-
ed, i.e., more isolated, atoms should be | T,/ T,,| times
the strength on other isolated atoms. If we continue
this analysis, we see that on the mth-order superisolat-
ed atoms, the wave function has a relative strength of
order |T,/T,|™ Since an mth-order superisolated
atom first appears at a distance of order 7™ away (to
the right) from the origin, the envelope of the wave
function scales in distance as a power law, with the
power given by In|7,/T,|/Int. This result is
equivalent to the one obtained by Kohmoto and Bana-
var’ on the basis of a three-iteration map.

A similar scaling behavior of the wave function can
be obtained for the state at the top or bottom of the
spectrum.7 In general, for any given state we can asso-
ciate with it a string, pypyp3. . ., from our RG analysis.
The p,’s take values of ¢, ¢, and b, meaning top, cen-
tral, and bottom, respectively. For instance, if the en-
ergy belongs to the central cluster, the top subcluster
of the central cluster, etc., then we associate with it a
string ct. . .. If the string has a periodic tail, then we
call the state a rational state. It is not difficult to see
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that for a rational state, the wave function should have
a self-similar behavior.” Chaotic behavior of the wave
functions may appear for irrational states.

So far, we have only considered case (A) of our
model. In case (B), the Fibonacci lattice breaks into
biatomic molecules and triatomic molecules, if we ig-
nore the weaker bonds. There are five levels in the
first approximation: E= % T, for the bonding and an-
tibonding biatomic molecules, and £=0, +v/27T, for
the three normal modes of the triatomic molecules.
An effective Hamiltonian can be constructed within
each of the degenerate levels. But the resultant sublat-
tices have only isolated units and double-unit
molecules in a further approximation. Therefore, the
previous arguments apply for the subsequent analysis.
So the spectrum should consist of five main clusters,
each of which trifurcates indefinitely as in case (A)
[see Fig. 1(b)].

In case (C), the first approximation of ignoring the
bonds results in two degenerate levels. An effective
Hamiltonian can be constructed for each of the levels.
It can be shown that the resultant sublattices have the
same structure as the Fibonacci lattice in case (A).
Thus, the whole spectrum should consist of two main
clusters, each of which trifurcates idefinitely [see Fig.
1(c)].

Our RG approach should be useful for other self-
similar lattices, of which our model, with the three
cases considered, is merely the simplest example. It
might be possible to apply this approach to higher-
dimensional lattices. Currently, we are exploring such
possibilities.’

An important point should be emphasized. In the
present work, we initially constructed a RG theory,
which is then numerically verified by plotting the pro-
bability density over the clusters, subclusters, etc. For
a general quasiperiodic system, it is not easy to find a
RG theory beforehand. Thus, in a numerical ap-
proach, one is strongly advised not just to find the en-
ergy spectrum, but also to find the probability density
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over the clusters, subclusters, and so on. There
should be an intimate relationship between the
behavior of the densities and the energy ranges of the
clusters. By doing so, one can gain deeper insight into
the problem. With luck, one may even be able to find
a RG theory afterwards. The probability densities may
also be plotted in momentum space, which could be
useful for nearly free QP systems. In this case, the
wave function peaks in momentum space but not in
real space.
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