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Dynamic Scaling of Cluster-Mass Distributions in Kinetic Colloidal Aggregation
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The cluster-mass distributions produced in the kinetic aggregation of aqueous gold colloids are
measured over an extended range of masses for two limiting kinetic regimes, diffusion-limited
(DLA) and reaction-limited (RLA) aggregation. Markedly different distributions are found, with
DLA having a peaked distribution, while RLA has a power-law distribution. In both cases the dis-
tributions are shown to exhibit dynamic scaling, as has recently been predicted. The data are inter-
preted with the Smoluchowski equations, and are used to determine the form of the appropriate
kernel for each regime.

PACS numbers. '64.60.—i, 05.40.+j, 64.75.+g, 82.70,Dd

The study of the kinetic aggregation of small parti-
cles to form larger clusters has achieved new prom-
inence'2 with the discovery that the structures of col-
loidal aggregates exhibit dilation symmetry, and thus
are well described as fractals. 3 4 In an effort to develop
a more fundamental understanding of these kinetic
growth processes, attention has now turned to the
dynamics, which 'are intrinsically related to the resul-
tant structures. These dynamics are most clearly em-
bodied in the cluster-mass distribution N(m) and its
time dependence. The shape of the cluster-mass dis-
tribution has a profound effect in determining the
dominant reaction events which ultimately strongly in-
fluence the structure of the resultant clusters. Fur-
thermore, it now appears that cluster-cluster aggrega-
tion can fall into two distinct regimes of behavior, each
belonging to a separate universality class. Knowl-
edge of the cluster-mass distribution is crucial both to
distinguish and identify each regime„and to develop
any fundamental understanding of the kinetic behavior
characterizing that regime. Finally, since many studies
of colloid aggregation rely on scattering measure-
ments, a knowledge of N(m) is indispensable for
proper interpretation of the results.

A convenient and widely used description of the
cluster-mass distribution is through the use of the gen-
eralized Smoluchowski equations. s " While these
equations themselves cannot predict the shape of the
aggregates, the effects of the structure, as well as most
of the other important physics of the aggregation pro-
cess, must be included in the kernel or reaction matrix
used in their solution. It has recently been demon-
strated that the solutions for a broad class of common-
ly encountered kernels exhibit a dynamic scaling' '
and can be classified into three general categories, "
thus providing an important framework for the de-
scription of the aggregation dynamics. However, the
key to the successful application of the Smoluchowski
equations is the choice of the appropriate kernel, and
this has been severely hampered by the lack of experi-
mental data.

In this Letter, we present measurements of the

cluster-mass distribution N(m) and its time depen-
dence, produced by the kinetic aggregation of aqueous
gold colloids, and show that the shape of the cluster-
mass distribution depends critically on the aggregation
kinetics. We study two limiting kinetic regimes,
diffusion-limited (DLA) and reaction-limited (RLA)
aggregation, each of which has its own characteristic
dynamics and produces aggregates with different frac-
tal dimensions df. We show here that the cluster-mass
distributions are also markedly different, with N(m)
for DLA exhibiting a reasonably well-defined peak,
while for RLA it is more nearly described as a power
law. Furthermore, we show that the cluster-mass dis-
tributions exhibit dynamic scaling in both cases, and
we suggest the appropriate form of the kernels for a
Smoluchowski-equation description of the dynamics.

We measure N(rn) by analyzing transmission elec-
tron microscope (TEM) images of the clusters on
TEM grids prepared at several times as the aggregation
proceeds. 3 A sampling of the clusters is obtained from
several low-magnification micrographs of random re-
gions on a grid. The mass m, of every cluster in the
micrograph is determined by counting of the number
of gold particles in the cluster L Sufficient clusters are
counted to obtain a representative sampling of N(m)
at each time, and the data are compiled in histograms,
whose bins are divided evenly on a logarithmic scale,
with the results normalized by the bin width. Thus the
accuracy with which we must measure the cluster mass
is reduced as the mass increases. While this measure-
ment technique provides somewhat limited statistical
accuracy, it is simple and provides results over a very
large range of cluster masses.

Typical TEM images showing clusters produced in
each regime are shown in Fig. l. Initially, the colloid
is stabilized against aggregation by the large charge. on
the surface of the particles, and by controllable reduc-
tion of this charge to varying degrees aggregation is in-
duced with a wide range of rates. In Fig. 1(a) the clus-
ters were produced by DLA, and the sample was
prepared one minute after the aggregation was initiat-
ed. Since all the charge has been displaced, the clus-
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FIG. l. Typical TEM images of clusters formed by (a)
diffusion-limited aggregation and (b) reaction-limited aggre-
gation. The aggregate's fractal dimensions and the cluster-
mass distributions are clearly different for the two regimes.

ters stick to each other immediately upon collision,
and the aggregation rate is limited solely by diffusion.
The screening of the cluster interior due to the dif-
fusive trajectory leads to the open, tenuous structure
evidenced in the figure, with df =1.75. Furthermore,
while there is a broad distribution of cluster masses,
no one size predominates. In contrast, Fig. 1(b)
shows clusters produced by RLA, and was prepared
two hours after the aggregation was initiated. The
slow rate is a consequence of the remaining surface
charge, which provides a Coulombic repulsion be-
tween the particles and results in a very low probability
of sticking upon collision. Thus the diffusive trajecto-
ry no longer affects the cluster structure, but rather
they can interpenetrate to a greater extent, leading to
the denser structures evidenced by the larger clusters
in the figure, and consistent with the higher fractal
dimension df = 2.05. Furthermore, the cluster-mass
distribution is clearly substantially different, as evi-
denced by the preponderance of clusters with very
small masses.

A histogram analysis of the cluster-mass distribution
for DLA is shown in a logarithmic plot in Fig. 2 for
data collected three different times after the initiation
of the aggregation. Each data set is normalized to the
total number of single gold particles actually counted,
S, =x,m, W(ml). As time increases, the number of
clusters of a given mass decreases, while the mass of
the largest clusters increases. The sample error bars
shown reflect the statistical errors due to the number
of clusters counted, normalized by the bin width. At
the later times most of the bins at low mass contain, at
most, only one cluster each. Empty bins are shown by
the points below the axis break, while bins containing
single clusters have the very large error bars.

The histograms of the cluster mass distributions for
reaction-limited aggregation are sho~n in a logarithmic

I

log m,

FIG. 2. Histogram analysis of the cluster mass distribu-
tions for DLA for samples prepared one minute (squares),
ten minutes (plusses), and thirty minutes (asterisks) after
the aggregation was initiated. The points below the break of
the y axis represent empty histogram bins in the logarithmic
plot, while the very large error bars reflect bins containing
only one cluster each. Over 100 clusters, comprising —105

gold balls, are included in each of the first two data sets,
while 25 clusters, comprising —5x105 gold balls, are in-
cluded in the last. The data in the inset have been normal-
ized with P~ to show the dynamic scaling. The empty bins
have not been included.

plot in Fig. 3, again for three different times after the
aggregation is initiated. Each data set is again normal-
ized by St. The data can be approximately character-
ized as a power law, W(m) —m ', up to some cutoff
mass, which increases with time, and with 7 =1.5
+ 0.1.
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FIG. 3. Histogram analysis of the cluster-mass distribu-
tions for RLA for samples prepared two hours (squares), six
hours (pluses), and eight hours (asterisks) after the aggrega-
tion was initiated. About 500 clusters are included in each
data set. The data in the inset have been normalized with P2
to show the dynamic scaling.
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We use the Smoluchowski equations8 to describe the
time evolution of the cluster-mass distribution:

dN(m, )
K», N(m&)N(m, &)

dr

fPlI Nlg

J=1

where K,&
is the kernel. In discussing solutions to the

Smoluchowski equations, we define the nth moment
of the distribution, P„=S„/S„&, where S„
= X, AN(m, ). If the solution exhibits dynamic scal-

ing, it can be expressed as" N(m, , r) = P„zp( m;/P„),
where Q(x) is the scaling function whose form is time
independent. Here P„ is any moment of the distribu-
tion which reflects the time dependence, which in turn
can be characterized by a dynamic exponent'2'3 z,

where P„—r'. Physically, a scaling solution implies
that the distribution function attains a form whose
shape is independent of time, while all the time depen-
dence is reflected in the behavior of the moments of
the distribution.

Many types of aggregation can be described with a
class of homogeneous kernels which are characterized
by K,&

—m/'m&", for m» & m; and K,(,&=a"K,&, so
that A, =p, +v. The solutions can be divided into
several classes, " depending on the values of the ex-
ponents A. and p, , each exhibiting dynamic sealing,
with a characteristic behavior both for the shape of the
cluster mass distribution and its time evolution. Thus
we can use our measured N(m) to attempt to identify
the class of the solution and hence the form of the
kt:rncl.

We first consider the appropriate kernel for dif-
fusion-limited aggregation, which has traditionally
been taken as ' K,&

=4~o l&(D, + D&), where D, is
the diffusion constant of a cluster of mass m, and 0-,

&
is

the effective collision radius for clusters of mass m,
and m&. As a consequence of the screening, we take
a&=R, +R&whe, re R, is the radius of a cluster of
mass mi. Furthermore, scaling arguments, ' as well as
numerical solutions of the hydrodynamic equations '6

suggest that D, —R, . Thus, K& —2+(m, /m&)
1)d

+ (m&/m, ) &. We note that this is a special form of1/d

the class of kernels we are considering, with & = 0 and
~ = —p = 1/df (class III)." An analytic solution to the
Smoluchowski equations does not exist for this kernel.
However, except far off the diagonal, when m; &( m, ,
this kernel is well represented by a constant, for which
an analytic solution does exist, '7 N(m, ) = So/'PI
x (1 —I/Pt)' . The solid lines in Fig. 2 represent
the calculated distribution functions using the values
obtained for So and P~ directly from the TEM analysis.
The agreement with the data is satisfactory, except at
small mass and long time.

To look for dynamic scaling, we have normalized

each data set by Pt2/So and have plotted them as a
function of m, /PI in the inset in Fig. 2. Dynamic scal-
ing is indeed observed, as all the data lie on a single
curve, which in fact represents the shape of the scaling
function P(x). If the empty histogram bins had been
included in the inset, P(x) would tend toward zero at
small x. The time dependence of P~ is best described
as a linear function of time, in accordance with quasi-
elastic light-scattering measurements'8 which suggest
that z= 1, as predicted by the constant kernel solu-
tion. '

The poor agreement between the analytic solutions
and our data at low mass and long times most likely re-
flects the effects of the very large reaction rate far off
the diagonal, where the approximation of a constant
for the kernel fails badly. Physically, this large reac-
tion rate is due to the small clusters with very large
diffusion constants reacting with the large clusters with
their large capture radii. This large off-diagonal term
can be expected to lead to a faster depletion of the
concentration of the small clusters. In fact, consistent
with our observations, a decrease in the number of
particles at low mass and long times has been predicted
for aerosols, '9 as well as by a scaling analysis of the
Smoluchowski equations. "'3

We now turn our attention to the data for RLA.
The observation of a power-law cluster-mass distribu-
tion, with r = 1.5, immediately rules out a gelling ker-
nel, with A. & 1, since this invariably results in a
power-law distribution with v ~ 2. Furthermore, it ex-
cludes kernels with p, ( 0 (class III), since these result
in a peaked cluster-mass distribution. Kernels with
p, & 0 (class I) can produce power-law solutions, and
require h. = 0.5 to give 7 = 1.5 at the early stages of ag-
gregation. Similarly, kernels with p, =0 (class II) can
also produce power-law solutions with ~ = 1.5, but are,
in general, more difficult to characterize. However,
Ballzo has proposed a geometric scaling model which
suggests that the appropriate kernel has p, =0 and
X = 1, which not only results in a power-law solution
with ~ =1.5, but also predicts that the characteristic
cluster size grows exponentially in time, in accordance
with quasielastic light-scattering measurements for
RLA. 5 For monodisperse initial conditions, an analyt-
ic solution exists for the sum kernel, K,&

—m;+ m&,

which has similar scaling. In fact, this kernel was
found to describe the cluster-mass distributions mea-
sured, for i ~40, for antigen-antibody —induced RLA
of polystyrene colloids. z' The solid lines in Fig. 3 are a
fit to the sum kernel solutions

N(m, ) = Sle ' (m, b) ~- I/P, m, i

where 8 =1—I/Pt, and demonstrate good agreement
with our data.

To investigate dynamic scaling for the RLA data, we
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must use P2 or a higher moment to reflect the time

dependence of the distribution. We obtain P2 by in-

tegrating the sum kernel prediction using the fitted
values of Pt for each data set. We have plotted the

three data sets, each normalized by P2/So, as a func-
tion of rnt//P2 in the inset. The data all lie on a single
curve, illustrating the dynamic scaling, and the shape
of the curve represents Q (x). The time dependence of
P2 is exponential, in accordance with quasielastic
light-scattering measurements. Thus, z is not well
determined here.

While the sum kernel solutions describe our data
rather well at early times, the agreement is not as good
for the data sets measured at long times. In fact, here
our data might be described by two exponents, a larger
one at small mass, and a smaller one at large mass.
Indeed, such behavior is predicted" by the scaling
analysis of the Smoluchowski equations for class-I ker-
nels that are on the border of class II, having p, slightly
greater than zero. Here, N(mt, t) is predicted to
behave as for p, =0 for an extended period of time, be-
fore reaching the steady-state solution, which has two
distinct power-law regimes, with r = I+A, at low mass
and r = A. at higher mass, until it is cut off exponential-
ly. Furthermore, the dynamic exponent predicted is
z=1/(1 —&), which is very large for X ~1, and, in
practice, may not be distinguishable from the ex-
ponential growth measured. Thus, we conclude that
the kernel which describes RLA is consistent with

p, ~ 0 and A. ~ 1, and thus may be either a class-II ker-
nel or a class-I kernel that is very nearly class II.

In conclusion, we emphasize that all of these results
were obtained with exactly the same colloid system.
We merely changed the rate of aggregation by adjust-
ing the surface charge on the particles. Nonetheless,
we obtain two markedly different distribution func-
tions, depending on the kinetics.
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