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Spinodal Curve in Highly Asymmetrical Polyelectrolytes
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The study of salt-free polyelectrolytes within the primitive model and ~ith the hypernetted chain
integral equation leads to a phase separation at very low concentration. The spinodal line and the
critical point are deduced from the compressibility equation and are determined as functions of the
polyion charge.

PACS numbers: 64.70.—p

In a preceding paper' (noted here as paper I), the
hypernetted-chain integral equation (HNC) has been
used to study the structural and equilibrium properties
of highly asymmetrical polyelectrolytes in the frame-
work of the primitive model. For a two-component
system, polyion+counterion without added salt, an in-

teresting effect was noted: As the concentration is de-
creased, the osmotic compressibility increases and
seems to diverge at a fixed concentration. It is impos-
sible to obtain a HNC solution below this concentra-
tion. This problem is not due to a failure of the nu-
merical integration, but is rather an indication of a
physical phenomenon: The cut-off concentration is a
point of the so-called spinodal line which is the fron-
tier of an unstable region. In this region, the negative
compressibility leads to a spinodal decomposition
which means a phase separation. In the present
Letter, we investigate this effect in a more systematic
way by studying the influence of temperature, size,
and charge parameters. The spinodal line and the criti-
cal point are obtained for different charge dissym-
metries. I present here only the most important pre-
liminary results without giving the details of the
theory. The latter will be described more precisely in a
future paper. 2

Within the primitive model, the pair potential it,&( r )
is given by

Pittl(r) =+~, r & trij=(trt+tr )/2,

= Z;Z, La/r, r ) trtl,

where P= 1/kT and La= e /4meoekT is the Bjerrum
length. e is the dielectric constant of the continuous
solvent. The particle i is a charged hard sphere charac-
terized by a diameter tr;, a charge Z;, and a concentra-
tion p&. It is important to note that the potential is
purely hard sphere+Coulombic without specific "van
der %aals" attraction. A two-component system cor-
responds to a mixture of polyions (p) and counterions
(c). The electroneutrality condition is Z~p~+Z, p,= 0. For simplicity, we assume a zero size for the ion,
tr, =0. This hypothesis does not restrain the generali-

ty of the present model since the size of the ions is al-
ways very much smaller than that of the macroparti-
cles (the Coulombic interactions assures a strong
short-range repulsion between two counterions) .
Thus, the present binary mixture is characterized by
three independent dimensionless numbers: the
volume fraction occupied by the polyions,

/6p~'tr~; the ratio of the charges, ~Z~/Z, ~; and
the temperature-dependent parameter ~ Z, ~ La/a where
a=tr~/2 is the polyion radius. Without losing gen-
erality, we set Z, = —1. The three numbers are then
$, Z= Z~, and t=La/a= 1/T", where T is the nor-
malized temperature. The problem is now to find the
phase diagram ($,t) for different colloidal charges Z.

From the pair potentials, the pair distribution func-
tions and the partial structure factors are calculated
with the exact Ornstein-Zernike equation and with the
approximation HNC equation. 3 This equation needs
an iterative numerical integration which is described in
detail in paper I. In general, I have used a real step
P = a/5 and 256-512 points. The convergence is very
slow near the spinodal line, especially in the vicinity of
the critical point. The normalized osmotic compressi-
bility X/Xo= kT(8p/Bn ) r is calculated from the
infinite-wavelength limit of the structure factors.

The first results correspond to a polyion charge
Z=20. In Fig. 1 the normalized compressibility is
plotted versus the volume fraction at different values
of the parameter T". At high temperature, the isother-
mal curves are obtained in the whole range of concen-
tration. In contrast, at low temperature or high t
value, it is impossible to obtain the HNC solution in a
part of the concentration range. When the concentra-
tion decreases, the compressibility increases and it be-
comes more and more difficult to get the numerical
convergence, which indicates the approach of the spi-
nodal line. The cutoff concentration decreases with
increasing temperature until a value T' near 4.3, above
which the whole domain is accessible again. This tem-
perature and the corresponding concentration define
the critical point. We note that the locus of the spino-
dal line cannot be exactly deduced from Fig. 1. In the
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FIG. 1. Normalized compressibility vs volume fraction at
different temperatures for Z = 20. Curve a, T" a/LB
=3.27; curve b, 3.50; curve c, 3.73; curve d, 3.97; curve e,
4.20; curve f, 4.32; curve g, 4.43; curve h, 4.67; curve i,
5.83.
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Phase diagram 1 vs $ for Z=20. The different
curves correspond to different values of the normalized
compressibility. The last curve (crosses) represents the spi-
nodal line.

present work I did not try to obtain a more precise
evaluation of this curve but it is certainly possible to
get it with more numerous numerical points and much
patience. I take the opportunity to note that the HNC
calculation near the unstable region is more difficult
than the corresponding calculation for a classical
Lennard-Jones-type potential: First, the ionic mixture
needs the treatment of three distribution functions in-
stead of one, then the strong attraction between po-
lyion and counterion needs a small real step while the
divergence of the compressibility as the long-range
behavior of the Coulombic potential needs a small step
in the Fourier space.

The phase diagram T" vs $ is given in Fig. 2. Dif-
ferent curves at constant compressibility are drawn.
The special curve X = +~ which defines the spinodal
line is obtained by extrapolation. We note that the
high-concentration part is obtained in a relative easy
manner while the low-concentration part is more im-
precise. The reason is that it is difficult to investigate
the rare phase below the critical temperature. In the
infinite-dilution limit the compressibility differs from
the ideal part by a positive term proportional to the
square root of the concentration as given by the
Debye-HCickel law. Thus, X/Xo increases suddely from
1 at low concentration and diverges rapidly for
T" & T; (see the beginning of the curve e in Fig. 1).
As a consequence, the rare phase is very dilute and oc-
cupies a very narrow part of the phase diagram (Fig.
2). This differs from the results for classical simple
liquids for which the compressibility presents a posi-
tive or negative linear slope versus @. Another differ-
ence is the position of the critical point. Here, we
deduce from Fig. 2 T,

' —4.25 or t, —0.23 and
@,—0.6% while the critical volume fraction for a
Lennard-Jones potential is about 20 times larger. The

coexistence curve which lies outside the spinodal line
cannot be calculated from the results of Fig. 1 without
numerical integration.

How does the phase diagram depend on the charge
dissymmetry'P HNC results have been obtained for
other charges: Z = 5, 10, and 100. In a first approxi-
mation, the critical volume fraction seems to be nearly
independent of the polyion charge and equal to the
preceding value. In contrast, the critical temperature
is strongly Z dependent. The logarithmic plot of T; vs
Z is shown in Fig. 3. The linear behavior of this curve
g1VCS

T. 0 123Zi. is or & 8 14Z-i. is (2)

The value 1.18 of the exponent is a little larger than
one which was expected, since the most important
correlations in such systems are the polyion-
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FIG. 3. Log-log plot of the critical reduced temperature vs
the polyion charge.
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counterion correlations. Indeed, the polyion-coun-
terion potential behaves as —Zt, the polyion-polyion
potential as + Z r. The strong attraction between dif-
ferent ions induces large values of the polyion-
counterion distribution function at the contact (about
20 for Z = 20 near the critical point). The expression
(2) can be compared to the condensation threshold ob-
tained in the Poisson-Boltzmann-cell theory, 4 Zr =4,

What is the physical meaning of such a phe-
nomenons First, the problem is to know whether the
effect is not simply due to an artifact of the HNC ap-
proximation. It is known that HNC does not present a
self-consistency. '3 s In particular, the virial pressure
behaves classically when the compressibility diverges.
Stell, Wu, and Larsen6 have studied the phase separa-
tion for the restricted primitive model (symmetrical
electrolyte). From fundamentally different equations
of state, they obtained various spinodal lines. Their
conclusion is that only the precise location of the criti-
cal point, rather than its existence, remains in doubt.
We have the same opinion in the case of polyelectro-
lytes: The critical point certainly exists but is not
given correctly by the HNC equation. The important
difference between electrolytes and polyelectrolytes is
that a phase separation can be obtained in aqueous
solutions at room temperature in the latter case. The
Bjerrum length is about 7 A under normal conditions.
Thus, the critical point given by Eq. (2) can be ob-
served in polyelectrolyte solution if the condition
a —0.9Z"8 A is fulfilled, which corresponds, for ex-
ample, to Z = 20, a = 30 A (micelle), or Z = 200,

a=500 A (colloid). This result is of interest in the
theory of colloidal stability since a phase separation is
expected even in absence of a van der Waals attrac-
tion. This differs from the classical Derjaguin-Lan-
dau-Verwey-Overbeek approach. 7 In fact, the negative
Debye-Huckel term plays the role of the attraction in
the equation of state.

In the next paper, we will study in a more systematic
way the present effect, by comparing the HNC results
with some analytical equations of state, by investigat-
ing the influence of added salt, and by using the no-
tion of effective polyion-polyion potential as intro-
duced in recent papers. s '0
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