
VOLUME 57, NUMBER 16 PHYSICAL REUIEW LETTERS 20 Ot-TOBER 1986

Relativistic Solitary-Wave Solutions of the Beat-Wave Equations
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The relativistic equations governing the nonlinear interaction of two light ~aves and a Langmuir
wave are shown to admit two classes of solitary-wave solutions. Temporal solitary waves propagate
at speeds greater than the speed of light and carry no information. SpatiaI solitary waves propagate
at speeds less than the speed of light and do carry information. The properties of these ~aves are
discussed and the spatial solitary ~aves are sho~n to be well suited to the beat-eave acceleration of
particles.
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The nonrelativistic solitary-wave solutions of the
three-wave equations' have been known for some
time, and have found applications in many diverse
areas of scientific research. An area of current interest
is the beat-wave acceleration of particles. 3 One of the
problems with the conventional scheme for the beat-
wave acceleration of particles is that the width of the
Langmuir-wave envelope increases steadily as the
wave propagates through the plasma. " On a time
scale of the order of ru, ', where cu; is the ion plasma
frequency, ion motion becomes important and des-
troys the coherence of the Langmuir wave. The re-
sulting turbulent wake drains energy from the incident
beams, but cannot be used to accelerate particles. This
is a serious waste of incident laser energy. To over-
come this difficulty, Mima er al6 have recently pro-
posed using a solitary-wave structure, in which the
Langmuir wave is spatially localized, to accelerate par-
ticles.

In order that the particles to be accelerated do not
outrun the solitary wave before significant acceleration
has been achieved, the speed of the solitary wave must
be close to the speed of light. In this sense, the soli-
tary wave under consideration is a highly relativistic
space-time modulation of the three-wave envelope
functions. The constituent Langmuir wave is weakly
relativistic in the sense that the "quiver" velocity as-
sociated with the electrostatic field of the wave is
much less than the speed of light, so that only the
lowest-order corrections to the electron mass need be
retained in the equations of motion. This results in a
nonlinear reduction in the natural frequency of the
Langmuir wave, by an amount which is proportional to
the square of the wave amplitude. 7 Neither of these
relativistic effects has previously been taken into ac-
count for solitary waves.

Originally, Nozaki, Taniuti, and Ohsawa'2 derived
the nonrelativistic envelope equations in the plasma
(or laboratory) frame, and looked for traveling-wave
solutions. The solutions they obtained behave non-
singularly as the solitary-wave speed approaches the
speed of light. This has led Mima ei al. to speculate

that their solutions are valid for arbitrary solitary-wave
speed. One motivation of this Letter is to examine the
consistency of this assertion with the special theory of
relativity.

The starting point for this investigation is Maxwell's
equations, together with the continuity and momen-
tum equations for electrons. If we take advantage of
approximations which are valid in the laboratory
frame, these are readily combined to give three cou-
pled second-order wave equations. These equations
are formulated in terms of the four-potential of each
wave, and the linear and nonlinear four-currents,
whose Lorentz-transformation properties are well
known. It is therefore a simple matter to Lorentz
transform the second-order equations to a frame mov-
ing with normalized speed P.s These are then rewrit-
ten approximately as three first-order partial differen-
tial equations for the slow temporal and spatial evolu-
tion of the wave amplitudes, which are identical in
form to the laboratory-frame equations. '9 The differ-
ence, of course, is that these equations are now formu-
lated in terms of quantities in the moving frame.

These envelope equations admit two classes of
solitary-wave solutions. A temporal solitary wave is de-
fined to be a wave whose envelope is independent of
position in the moving frame. Different points on the
wave are related by spacelike intervals and so no infor-
mation can be carried by this type of wave. Converse-
ly, a spatial solitary wave is defined to be a wave whose
envelope is independent of time in the moving frame.
Different points on the wave are related by timelike
intervals and so information can be carried by this type
of wave.

In either case, the governing equations can be writ-
ten in the canonical form'o

d4 1/ d( isl ~ 2~ 3 i ~ 2/ A Is2 ~ i ~3,

l& 3/ d( = —is3 A i A 2 + is3{S + & I & 3 I

' )&3 .

For temporal solitary waves, the dependent variables
are the action amplitudes of each wave, the variable g
represents time, and the s&'s are all equal to unity. For
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spatial solitary waves, the dependent variables are the
action flux amplitude of each wave, the variable g

represents position, and the sj's are the signs of the
uncoupled group velocities of each wave in the moving
frame. Explicit definitions for quantities not defined
herein, such as the phase mismatch parameter 5 and
the nonlinear phase-shift parameter A. , are to be found
in Ref. 10 (corresponding defmitions for the labora-
tory-frame equations are to be found in Refs. 5 and 9).

Notice that Eqs. (1) possess the following two in-

variants:
(b)

I = s, lxtl'+ s, lx, l', 1= s, la, l' —s, lx, l'. (2)

This reflects the fact that the Manley-Rowe relations"
are satisfied.

Bounded solitary-wave solutions of Eqs. (1) exist,
with the property that two of the wave envelopes are
spatially localized, providing that any two of si, —s2,
and —s3 have the same sign. Thus, there are three
types of solution to Eqs. (1), classified by which wave
is the "pump, " i.e. , which wave has nonzero ampli-
tude p as g tends to infinity. For brevity, only those
solutions for which wave 1 is the pump wave will be
considered explicitly. If we use the invariants (2), the
Langmuir-wave amplitude is readily shown to be given

by

—2b(1 —t )+2[(b2+4c)(1—t )]' 2

b2 +4c

and

t = tanh(ag),

a = (4p —5 ) 2, b = (4+SR.)/(4p' —5')

c =)i'/[4(4p' —S') ].
Once A3 is known, Ai and A2 are found by combining
Eqs. (2) and (3). Notice that Eqs. (2) and the "ini-
tial" conditions imply that the daughter waves have
equal action (flux) densities.

In Fig. 1, the action (flux) amplitude of each wave is
plotted as a function of the variable (, for different
values of 5 and A. . The solid line denotes the pump
wave, while the broken line denotes the daughter
waves. The initial amplitude of the pump wave is
equal to —1.0 throughout and ( is measured in units
of the scale length for the case in which 5 and A. are
both equal to zero. This case is shown in Fig. 1(a).
Notice that there is a complete transfer of action be-
tween the pump wave and the daughter waves. In gen-
eral, when the self-nonlinearity of the Langmuir wave
is taken into account, the interaction is detuned before
a complete transfer of action can take place, as shown
in Fig. 1(b). However, if we set the phase-mismatch

(c)

FIG. 1. The action (flux) amplitude of each wave is plot-
ted as a function of position in the moving frame. The solid
line denotes the pump wave, while the broken line denotes
the daughter waves. The initial amplitude of the pump wave
is equal to —1.0 throughout and ( is measured in units of
the scale length for the case in which 8 and X are both equal
to zero. (a) &=0.0 and X=0.0. (1) &=0.0 and h. =2.0. (c)
~ =~op, = —1.0 and A. =2.0.

parameter equal to

the effects of the nonlinear detuning of the interaction
can be countered, and a complete transfer of action
can take place. This is shown in Fig. 1(c). A similar
result was discovered in the conventional beat-wave
scheme by Tang, Sprangle, and Sudan. '2 For this val-

ue of the phase-mismatch parameter, the speed of the
solitary wave is independent of the initial amplitude of
the pump wave. However, the scale length of the
wave always depends explicitly on the initial amplitude
of the pump wave, the phase-mismatch parameter and
the speed of the solitary wave.

Having analyzed the solutions of Eqs. (1) in the
moving frame, attention is now focused on the form
of these solutions in the laboratory frame. The action
density n and the action flux density fare the temporal
and spatial components, respectively, of the action-
flux-density four-vector (n,f, 0, 0). By use of the
transformation laws for four-vectors, it is easily shown
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that

where the p&'s are the group velocities of each wave in

the laboratory frame. Henceforth, the convention is

adopted that unprimed quantities refer to the laborato-

ry frame, while primed quantities refer to the moving
frame. Notice that, as p tends to unity, a finite action
(flux) density in the laboratory frame corresponds to
an infinite action (flux) density in the moving frame.
Rather than transforming the general solution, only
the special case in which the phase matching is exact
and the self-nonlinearity of the Langmuir wave is

neglected will be considered. In this case, the general
formula (3) simplifies considerably.

The temporal solutions are

ni(x, r) =

n2(x, r) =

n3(x, t) =

tanh [p, , (r Px))—,
n'(0)

sech [p, , (r px) ]-,n'(0)

sech [p, ,(t px) ), —n'(0)

(4)

where n (0) is the initial action density of the pump
wave in the moving frame. Time is measured in units
of c i arid the inverse "period" is given by

m,'k32 I~,/c I'
p]= , ,(I -pp, ) (I -PP3),

p,f (0)
tanh'[p, ,(x —P r) ],

Y 1

p2 f(0)
fg(x, t) = sech'fp, (x Pr) ],, —

2

p,f'(0)
fg(x, t) = sech'[p, ,(x —pt) ),

'y 3

fi(x, r) =

where f'(0) is the initial action flux density of the

where u, is the quiver velocity of electrons in the field
of the pump wave. It is clear from Eqs. (4) that the
temporal solitary waves move with speed p, =p
the laboratory frame. The tenets of special relativity
are not violated by these waves, since they have to be
initialized at all points in space (although it is difficult
to see how this could be done in practice). Initially,
energy is everywhere present in the pump wave and is
exchanged only locally with the daughter waves. What
is remarkable is that when different points on the wave
begin to interact, the form of the wave is preserved.
Since p is, by construction, less than unity, these tem-
poral solitary waves are constrained to move at speeds
greater than the speed of light.

For spatial solitary ~aves, the solutions are

pump wave in the moving frame and the inverse scale
length is given by

.'k'I i/cl'
~s=

,
~2~3 IP2 —P I IP3 —P I,

6

It is clear from Eqs. (5) that the spatial solitary waves
move with speed p, =p in the laboratory frame. For
the same reason that the temporal solitary waves are
constrained to move at speeds greater than the speed
of light, the spatial solitary waves are constrained to
move at speeds less than the speed of light. This im-

portant effect of special relativity is missing from the
previous analyses of this three-wave interaction. Us-
ing the laboratory-frame equations (which are identical
in form to the moving-frame equations'0), Nozaki'3
has shown that the spatial solitary waves are unstable
when the daughter waves have equal group velocities.
As p tends to unity, the group velocities of the three
constituent waves become equal in the moving frame,
implying that the spatial solitary waves are unstable in this
limit. Notice that the speed of these solitary waves is
independent of the initial amplitude of the pump
wave. However, the inverse scale length of these soli-
tary waves depends on both the initial amplitude of the
pump wave and the speed of the solitary wave. In par-
ticular, as p tends to one of the group velocities of the
uncoupled waves, the scale length tends to zero and
the envelope approximation, upon which the theory of
these waves is based, breaks down. This reflects the
fact that the uncoupled group velocities delineate the
boundaries between the different types of solutions to
Eqs. (1), as discussed in Ref. 10.

A remarkable property of the general solitary waves
described above is that if the Lorentz parameter p is
allowed to be greater than unity in the spatial solu-
tions, the temporal solutions with a Lorentz parameter
of P ' are reproduced (and vice versa). This sym-
metry does not occur in an analysis based on a Galile-
an transformation of the laboratory-frame equations.

For parameters which are typical of an actual beat-
wave accelerator, the lower-frequency light wave plays
the role of the pump wave. '0 With & set equal to its
optimum value, the solitary-wave envelope does not
differ significantly from the solitary-wave envelope for
the case in which the phase matching is exact, and the
self-nonlinearity of the Langmuir wave is neglected.
Thus the relevant solutions are given by Eqs. (5) and
(6), with the subscripts 1 and 2 interchanged.

As a typical example, consider a plasma with an
equilibrium density no which is equal to 10'7 cm
This is irradiated by two neodymium-glass lasers, for
which co2/cu„ the ratio of the pump frequency to the
plasma frequency is equal to 100. The initial quiver
velocity of the pump wave, normalized to the speed of
light, is equal to 0.1. A spatial solitary wave exists,
with speed p, = 0.99 and peak electrostatic field
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E,„140MeV cm '. This is larger than the peak
accelerating field of conventional accelerators by a fac-
tor of 140! If one takes two exponentiations of the
amplitude as a measure of the width of the solitary
wave, and remembers that the Langmuir-wave en-
velope is symmetric about the point of maximum am-
plitude, then it follows from Eq. (6) and Fig. 1(c) that
the width of the solitary wave is approximately
130to, . This is sufficiently short that ion motion ap-
pears to be unimportant and sufficiently long that the
envelope approximation is valid. A test particle, prein-
jected into the field of the Langmuir wave at a speed
close to the speed of light, outruns the solitary wave in
a distance of 22 cm. In so doing, it gains 0.79 GeV of
energy. Thus, by use of multiple staging, it is theoreti-
cally possible to accelerate particles to teraelectronvolt
energies in a distance of the order of 1 km.

In the simplified physics of the three-wave model,
the spatial solitary waves described herein appear to be
well suited to the beat-wave acceleration of particles.
However, there are several mathematical and physical
questions to be resolved before the practical signifi-
cance of this scheme can be established. Two of the
more important ones are whether the incident laser
pulses can be shaped sufficiently to excite these soli-
tary waves, and whether the solitary waves are suffi-
ciently stable to impart a significant amount of energy
to the accelerated particles before their demise. These
questions are currently under investigation. It is en-
couraging to note that related solitary-wave excitations
have been observed in the Raman-active medium of
gaseous nonionized hydrogen, t ' corresponding to
the A. = 0 limit of the theory presented here.

The classification of solitary waves in terms of their
properties in the moving frame was inspired by a con-
versation with Y. C. Lee. A conversation with R. W.
Hellwarth is also gratefully acknowledged. This work
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