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Nonyerturbative Bistability in Periodic Nonlinear Media
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~e present a mechanism for a bistability and multistability induced by a periodic modulation of a

nonlinear rnediurn. In contrast to usual ones it is nonperturbative with respect to the nonlinearity.
The transmitted energy exhibits plateaus as a function of the incident intensity. The frequency
versus intensity propagation diagram is fractal. The possible relevance to noise in the conductivity
of systems with polarons and to optical, acoustical, or electromagnetic devices is discussed.

PACS numbers: 42.65.8p, 42.65.Pc, 71.38+i

The transmitted intensity of an incident plane wave
on a finite one-dimensional nonlinear medium is a
nonlinear function of the incident intensity. Such sys-
tems can exhibit bistability. Let us consider a piece of
nonlinear material 0~ x~ L of length L in a station-
ary regime. An incident plane wave Rtie'~ on the left
(x~0) induces a reflected plane wave on the left
Rie '~ and a transmitted plane wave Te'~ on the
right (x ~ L); Ri and Tdepend on the wave vector k
and on L. The medium is nonlinear; thus the
transmission coefficient as a function of the incident
intensity

~ Ro~ is not a constant. Then, for a given
value of the incident intensity, there may be several
values of ~Rt( and ( T(; this is called bistability. It is
well known that bistability may induce hysteresis in
the behavior of the transmitted intensity as the in-
cident intensity is varied.

In the present Letter we describe a new mechanism
leading to a bistable behavior. A crucial element in
the production of this new mechanism is the presence
of a spatial periodic modulation of the medium in ad-
dition to the nonlinearity. The effect of a periodic
modulation has already been studied from the bistabil-
ity point of view by Winful, Marburger, and Garmire:
There„by a perturbative treatment, enhancement of
the bistability is shown to occur in the vicinity of the
gaps of the linear theory (for a small periodic modula-
tion and a small nonlinearity). In addition to this type
of bistability, we exhibit another type of bistability
which cannot be tackled through such a perturbative
approach. This new mechanism yields a bistable
behavior with a certain number of specific features:
(1) The transmitted intensity as a function of the in-
cident intensity exhibits plateaus; (2) the lengths of
the plateaus and thus the hysteresis cycles increase
with the length of the device; and (3) the passing and
nonpassing regions, in a wave number versus transmit-
ted intensity diagram, are fractal.

We first consider for simplicity the stationary dis-
crete nonlinear Schrodinger equation:

Ee„=[H+]„=—4„„—W„ t+n~O„I'+„, (1)

where n is an integer, a & 0 when Q~ n ~ L, and

& = 0 f«& ( 0 and & & L; here the periodic modula-
tion of the medium is provided by the lattice discreti-
zation. Equation (1) is an approximate equation for
the probability amplitude of an electron in a deform-
able lattice (polaron). Below we study the similar con-
tinuous spatially periodic nonlinear equation (4),
which is a common stationary wave equation for the
electric field in a spatially modulated nonlinear medi-
UfA.

Let us look for solutions of the transmission prob-
lem associated with (1):

qr„= Roer""+ Rie '"~ n ~ 0

O'„= Te'"", n ~ L,

with 2cos(k) = —E. For a given k, we can solve (1)
step by step from n = L to n =0 for a given output
Te'"" and then find Ro and Ri. (Note that changing
~ T~ is the same as varying the nonlinearity parameter
n )If Ro r.emains of the same order as T, indepen-
dently of L, we say that the plane wave with wave
number k and outgoing energy ~

T~2 is in a passing re-
gime. If Ro appears to be a rapidly increasing function
of L (in fact, increasing as exp3L), we say that this
plane wave is nonpassing. We first investigate numeri-
cally (see Fig. 1) the regions in the variables k and

z/3
z/4

FIG. 1. Transmitting (hatched) and nontransmitting
(clear) regimes for the discrete nonlinear Schrodinger equa-
tion (1) (a= 1).
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FIG. 2. Enlargement of the region indicated in Fig. 1. FIG. 3. Transmission diagram of the discrete nonlinear
Schrodinger equation.

~

T~2 which are passing (hatched) and nonpassing
(clear) in the sense described above.

Interesting features undoubtedly appear in this dia-
gram: (1) Several branches (or tongues) appear which
are responsible for the bistability and multistability
phenomenon as described below; (2) these multiple
branches appear only above some threshold in

~
T~2—we have here a strictly nonperturbative phenom-

enon (more on this later); and (3) the transmitting re-
gion has a fractal shape —we show in Fig. 2 the en-
largement of the region indicated in Fig. 1. Actually
such a structure appears at any scale.

We turn now to Fig. 3 where, for a given wave
number (here k=2m/3), the transmitted energy ~

T~'
is plotted versus the incident energy ~

R0~2. L has been
taken equal to 50. The low-energy part of the curve
closely follows the diagonal with some oscillations,
corresponding to ~Ro~2= ( T~2, that is, to a passing re-
gime. The oscillations are the manifestation of the
usual bistability. In this regime, the corresponding
point (k, ~

T~2) is in a hatched region of Fig. 1. For
larger values of

~
T~2, approximately for 0.45~

I
Tl'

~0.8, the plateaus of Fig. 3 correspond to points
(k, ~ T~ ) in a clear region of Fig. 1. The points with
larger (

T(2 (0.8»
( T~2~1.1) are again in a hatched

region, i.e., in a transmitting regime: The curve of
Fig. 3 follows again the diagonal, with stronger oscilla-
tions. Finally, we have a second plateau for larger
values of

~
T~2. Thus, for some values of the incident

energy Ro there are several possible values of the
transmission, yielding bistability and multistability.
Depending on k and on the successive regions met by
(k, ~ T~ ) at fixed k, when I Tl is increased, this dia-
gram may exhibit various numbers of plateaus, possi-
bly one only. Note that, strictly speaking, and because
of the fractal nature of Figs. 1 and 2, a large number
(= L) of very tiny plateaus exist in the interval of
values of ( T~ corresponding to nontransmitting
waves. The plateaus seem perfectly flat because
L = 50 is large in view of the divergence rate (exp3L)

of Ro', shorter samples give plateaus of shorter lengths.
As in other types of bistability there are hysteresis cy-
cles; however, here their lengths depend on the length
of the system.

Since Fig. 3 can be deduced from the Fig. 1 through
simple considerations, and since Fig. 1 is simpler to
explain, we turn now to its theoretical explanation.
Equation (1) yields a recursion equation (0„&,+„)
=F(W„,W„+&), where F is a nonlinear mapping.
Thus, for a given wave number k, T being given, the
sequence W„can be computed by application of F re-
peatedly to the initial condition ( T exp(ikL ),
Texp[ik(L+1)]) . For zero nonlinearity, the solu-
tions of (1) are plane waves, and we explicitly know
the trajectories of F, linear in this case. The dynamical
system incuded by F is integrable. On the other hand,
for finite nonlinearity. Fbecomes a priori a nonintegr-
able mapping of C2. In fact, the gauge invariance of
(1) allows us to eliminate two variables, corresponding
to the arbitrary phase and to the current. We may
choose to describe the resulting dynamical system on
the plane R2 in the variables (('P(n) (2/~ T~,
le(n+ I) I'/I Tl'): The sequence (le(n) I'/I Tl',
f%'( n+1) f /f T(2) is the trajectory of some initial con-
dition [namely, (1,1)] by a mapping (x',y')
= fkT(x,y) (which preserves some smooth measure)
where y'= x, and

x' =y+ 2(~ —~ I TI2x) (xy —sin2k)

+ x(E—o. f
Tf'x)'.

In general, such a mapping exhibits two kinds of tra-
jectories: quasiperiodic ones and chaotic ones. In our
case, no bounded chaotic orbit can be observed, and
all the nondiverging trajectories are quasiperiodic.

In Fig. 1, the hatched regions correspond to values
of k and T such that the trajectory with initial condi-
tion (l, l) is quasiperiodic. In such a situation, the in-
cident intensity Ro oscillates as L is increased, and
remains of the same order as T On the other hand, in.
the clear regions, the trajectory diverges like exp3":
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(1,1) falls in a chaotic region, its images go to infinity,
and Ro, as a function of L, is rapidly increasing.

We are now in a position to understand the impor-
tant features of Fig. 1. It is known that most of the
quasipcriodie orbits of an integrable system (e.g. , Ffor
zero nonlinearity) are stable under small perturbations:
This explains transmission for the small values of T
On the other hand, in a nonlinear (measure-pre-
serving) dynamical system, possible elliptic periodic
points are surrounded by sets of quasiperiodic orbits
which form islands around them and that we eall here
stability basins. We will see that these basins explain
the transmitting regime occurring for large values of T
in Fig. 1.

At some frequency k, an outgoing wave of intensity
T is in a propagating regime if (1,1) is in a stability
basin of fkT. For small T, f„T has an elliptic fixed
point near (1,1) (the elliptic fixed point for T=O)
which has a very large basin so that its basin of stabili-

ty is likely to contain (1,1): We are in a transmitting
regime which can be analyzed in a perturbative frame-
work. For larger values of T, (1,1) may exit this basin
but it can enter the stability basin of another periodic
point; meanwhile, it may have encountered a chaotic
zone. Obviously, this behavior cannot be taken into
account by perturbative theories.

So we first describe the couples ( k, T) such that
(1,1) itself is a periodic point of period p of fkr.
priori, an integer p being chosen the equation

(2)

(two equations for two variables) should have, for
dimensional reasons, a discrete set of solutions (k, T).
In fact, (1) is invariant under the abscissa reversal,
which induces the following symmetry property of

(x' y') =fk.r(xy) (y x) =fk, r(y' x').
Because of this property, the set of solutions (k, T) of
(2) contains a curve. This can be checked easily for
the even values 2q of the period. Instead of solving
(2) with p = 2q, consider the equation (1,1)
= (f„T)«(x,x), where x may be any real number:
This provides two equations for three variables so that
the set of appropriate (k, T) is one dimensional. By
(3), (1,1) = (fkT)«(x, x) is equivalent to (x,x)
= (fk,T)«(1, 1) so that such a (k, T) satisfies (1,1)
= (fkT) «(I, 1).

We have computed explicitly these curves for
p = 1, 2, 3, and 4. For p = 1, this curve is simply the
T= 0 axis, corresponding to the linear case. For p = 2
we get the simple curve

~ T~ = —2cos(k); for
l T

~ (W2, ( T, T) is an elliptic two-periodic point,
whereas it is hyperbolic for ( T l & J2. Thus this
curve (up to ~

T~~ =%2) must lie in the hatched pass-
ing region of Fig. 1; furthermore in the neighborhood

of this curve the applications fk T have a two-periodic
point near (1,1) and (1,1) is in a stability basin. Cor-
respondingly, we see on Fig. 1 a tongue-shaped
transmitting area around the p = 2 curve, with a width
going to zero as

~
T~~ approaches W2 since the size of a

stability basin goes to zero as the periodic point
changes froin elliptic to hyperbolic. In the same way,
we have drawn on Fig. 1 the curves for p =3,4. This
analysis of the smallest periods provides a first good
qualitative description of the transmitting area and is
enough to emphasize the nonperturbative character of
this effect. For any value of p, there exist similar
tongues and similar curves starting at T= 0 and k mul-
tiple of «r/p. For large p, the corresponding tongues
get narrower.

We have described above the apparition of curves of
periodic trajectories branching from the curve T=O
(corresponding to one-periodic points). In fact, analo-
gous branching curves (coming with their correspond-
ing tongues) appear also starting from any curve corre-
sponding to p.periodic points: This hierarchy is respon-
sible for the fractal character of the frontier between
transmitting and insulating regions, as is suggested by
Fig. 2.

Note that, as can be understood from the theoretical
analysis above, the phenomenon of nonperturbative
bistability induced by the lattice does not depend
essentially on the type of nonlinearity within large
classes of nonlinear interactions and provided strong
nonlinearities are allowed. The actual shape of the
phase diagram may depend on the specific nonlinear-
ity.

The phenomenon described above for discrete non-
linear wave equations also appears in continuous non-
linear wave equations provided that we add a periodic
modulation of the medium. As an example let us con-
sider the nonlinear Schrodinger equation

where V(x) is a periodic potential. This is, for in-
stance, the stationary wave equation for the electric
field in a nonlinear medium with a periodic modula-
tion of the linear index. The tight-binding approxima-
tion of (4) is precisely Eq. (1) and thus the nonpertur-
bative bistability appears also for Eq. (4), in a cross-
over regime, for periodic potentials yielding a large gap
and for smail enough sample lengths.

There is an essential difference between the cases
u & 0 and n (0: A negative nonlinearity prevents the
solutions from diverging as fast as in the discrete case,
so that the nonperturbative effect described above can
only be a crossover phenomenon. In contrast, a posi-
tive nonlinearity allows a strong divergence of the
solutions of (4) (in fact, divergence within a finite
length). Thus this situation presents a strong analogy
with the discrete case, even for small potentials. This
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FIG. 4. Transmission diagram of the continuous non-
linear Schrodinger equation with periodic potential.

can be checked numerically: Figure 4 shows a
transmission diagram which is analogous to Fig. 3. We
have chosen a small periodic potential (0.2cosx) and
E=5 (i.e., an energy near the middle of the lowest
band) in order to obtain two plateaus, separated by a
nonpassing regime; for this figure, the sample is 10
periods long. A small change of the sample length
slightly modifies the shape of the transmission curve
in the passing regime but does not affect the level of
the large plateaus. For continuous equations, as in the
discrete case, other nonlinear interactions can produce
the same type of phenomenon.

Let us turn now to the possible relevance of the
nonperturbative bistability induced by a spatial modu-
lation to various domains of physics. Let us first con-
sider the case of semiconductors, in the presence of
polarons. The right-hand side of Eq. (1) is a one-
dimensional model Hamiltonian for such polarons. On
the other hand, for a=0, that is, in the linear case
corresponding to the treatment of electrons in the
tight-binding approximation, the transmission coeffi-
cient at the Fermi level is directly related to the elec-
tric dc conductance of the system by the Landauer for-
mula3: G = (e2/h) T/(1 —T). Assume, that the same
relation is valid in the case of polarons. Then Fig. 1

represents regions where the system is insulating or
conducting in the diagram variables Fermi level versus
nonlinearity. Changing the Fermi level induces large
but reproducible fluctuations of the conductance, a
phenomenon which has been observed in very narrow
quasi one-dimensional structures, 4 but for which other
explanations were first proposed. It is tempting to ask
whether the effect described in the present paper is
responsible foi' this behavior ln some systems and how
this theoretical suggestion could be tested experimen-

tally; in particular, we wonder whether one may ob-
serve hysteresis in a conductance experiment, as hap-
pens in our model. Also note that our effect provides
a genuinely nonlinear mechanism for creating a bi-
stable system, that is, a two-level system. Under some
noise induced, e.g. , by the phonons, it will generate a
macroscopic noise; this yields a new mechanism for
the generation of noises such as the 1/f type.

Let us now come to possible applications of our
results to nonlinear optics, acoustics, and electro-
magnetism. Bistability is clearly an important
phenomenon in such fields and is used in many de-
vices. If observable, our new mechanism could prove
of interest: By choosing the periodic potential, one
could create many different plateaus leading to the
coding of potentially as many elementary informations
as wished; furthermore, the presence of flat plateaus
may be useful for devices such as power-limiting or
switching devices. In order to get easily a periodic
modulation of the medium it is natural to think of su-
perlattices of semiconductors which could provide ap-
propriate experimental systems to observe and study
the nonperturbative bistability. It is also natural to
consider modulations of the medium created by a sta-
tionary wave (grating), as it is done for the achieve-
ment of phase conjugation.

We have not discussed the effect of disorder on the
phenomenon described in the present paper; in the
case of the usual bistability, we can mention the work
of Baylis, Papanicolaou, and White. 5

We are glad to thank E. Brezin, C. Flytzanis, and
R. Frey for stimulating discussions. Center de Phy-
sique Theorique is Laboratoire du Centre National de
la Recherche Scientifique 014.

C. Flytzanis, in Nonlinear Phenomena in Sohds, edited by
A. F. Vavrek (World ScientiTic, Singapore, 1985).

2H. G. sinful, J. H. Marbuger, and E. Garmire, Appl.
Phys. Lett. 35, 379 (1979).

3R. Landauer, Philos. Mag. 21, 863 (1970), D.
Langreth and E. Abrahams, Phys. Rev. 8 24, 2978 (1981);
D. J. Thouless, Phys. Rev. Lett. 47, 972 (1981).

4A. B. Fowler, A. Harstein, and R. A. %ebb, Phys. Rev.
Lett. 48, 196 (1982); M. Azbel, Solid State Commun. 45,
527 (1983); A. D. Stone and Y. Imry, Phys. Rev. Lett. 56,
19 (1986); P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55,
1622 (1985).

SA. Baylis, G. C. Papanicolaou, and B. White, to be pub-
lished.


