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Quantum Chaos and Statistical Properties of Energy Levels: Numerical Study
of the Hydrogen Atom in a Magnetic Field
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The transition to chaos in "the hydrogen atom in a magnetic field" is numerically studied and
shown to lead to well-defined signature on the energy-level fluctuations. Upon an increase in the

energy, the calculated statistics evolve from Poisson to Gaussian orthogonal ensemble according to
the regular or chaotic character of the classical motion. Several methods are employed to test the
generic nature of these distributions.

PACS numbers: 32.60.+i, 05.45.+b

During the last few years, the quantum analog of
classical chaos has been the subject of numerous in-

vestigations. An important question is, how does clas-
sical chaos express itself in the quantum spectrum
(and eigenstates)?

Chaotic two-dimensional billiards have been numer-
ically studied. The energy-level fluctuations are in

good agreement with the predictions of the Gaussian
orthogonal ensemble (GOE) of random matrices. '

Bohigas, Giannoni, and Schmit conjectured that this
phenomenon was generic for all chaotic systems. 2 The
results of Seligman, Verbaarschot, and Zirnbauer on a
family of two-dimensional oscillators supported this
conjecture.

In this Letter, we numerically study the classical
dynamics and the quantum spectrum of the hydrogen
atom in a magnetic field. The classical dynamics exhi-
bits a smooth transition from regular to completely
chaotic motion. ~ Using group-theoretical techniques,
we are able to compute a very large number of energy
levels both in the regular regime and in the chaotic re-
gime. This allows the most accurate comparison ever

done with the theoretical predictions. We believe that
the hydrogen atom in a magnetic field is the first sys-
tem which allows both accurate numerical predictions
(as done in this Letter; see also Wintgen and Fried-
rich5) and experimental investigations.

The nonrelativistic Hamiltonian of the hydrogen
atom in a magnetic field is (in atomic units)

y= B/B, is the reduced magnetic field (B,= m2~q~3/
(4meo)2t3= 2.35X105 T). The z component of the
angular moment L, and parity are constants of the
motion. We limit our discussion to L, = 0, even-parity
states. Similar conclusions can be reached from a
study of L, = 3, odd-parity states.

Upon introduction of the "semiparabolic" coordi-
nates

the Schrodinger equation for the energy E is

}F(p„—2E) + F(v, —2E) + (y2/8)p, 2v (p, 2+v ) —2}}4)=0, (3)

1 t)2 1F(p„—2E) = ——,+—
2 rip, p, Bp

F(p„—2E) is the Hamiltonian of a two-dimensional
oscillator with frequency co= ( —2E)'~
written in polar coordinates.

Equation (3) establishes the equivalence between
the hydrogen atom in a magnetic field and a system of
oscillators cou pled by the anharmonic term p,
xv2(p, 2+v2). This equivalence has group-theoretical
implications which are important for obtaining the
dynamical symmetries of the system. 6

In order to avoid the variation of the frequency of
the oscillators with E, we define the "dilated" semi-
parabolic coordinates

tl = ( —2E)'i p„

~ = ( —2E)"v.
If we set X = y /( —2E)2 and e = 1/( —2E) '~2,

eigenvalue for the coupled oscillators system takes the
form

Ho ~W) = 2e ~W),
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Ho= F(u, 1) + F(u, 1) + (k/8) u'u2(u'+u'). (7)

In order for the comparison between classical and
quantum behaviors to be meaningful, we first focus on
the classical dynamics. The hydrogen atom in a mag-
netic field and the coupled-oscillators system in (7)
share the same trajectories in phase space. The classi-
cal form for Ho is7

Hii =
2 pg + 2 p» + 2 tt + 2

u2 & 2 & 2 [ 2

+ —'Z u'u'( u'+ u') = 2e,

which obeys the scaling law

( tt, u, pg, p») ~ (0!tt, clu, clap», tip»),

E'~ A'

P ~ h./n .

Hence, the classical dynamics depends only on one
parameter,

(10)

By numerical integration of the equations of motion
associated with (7), Poincare surfaces of section have
been built. We project out of phase space the p„=0
plane and plot the "energy" (p2+ u2) of the u oscilla-
tor versus its phase tan t(p„/u). Figure 1 shows two
selected surfaces of sections taken at P =0.8 and 70.
At very low P, the motion is fully regular. Around
P=0.8 some chaos appears [a very small chaotic re-
gion is hardly visible on Fig. 1(a)].

The fixed point at the center of the figure corre-
sponds to the trajectories u=u, i.e., z=0 for the
atomic problem. It is associated with a trajectory in
the plane perpendicular to the magnetic field. The sta-
bility of this trajectory can be studied by the usual
linearization technique. s It is stable up to p =60.638,
where the fixed point transforms into a hyperbolic one
which remains unstable up to i8

Above P =60.638 the phase space is fully chaotic
[see Fig. 1(b)l except for very small regions, e.g. ,
those located near u =0 or u =0 (their relative sizes
are smaller than 10 4 which makes them negligible).
Our analysis is in overall agreement with previous
studies.

The present system has some advantages over the
oscillator system studied in Ref. 3. Actually the size of
the chaotic volume in phase space increases with the
parameter P and there is only one convex chaotic region
with non-negligible volume. This is associated with
the way in which the Coulomb dynamical symmetry is
broken by the magnetic field. 6

The next step is to calculate the quantum spectrum

(a)

(b)

A . '-', ". ..;...-.,".';;—.;:-:-. ;:.-:-,:-.;-„, —,.:..„-.
— "-,„---,,-.. . ,;a ~ p ~ ~ a' 'L' ~ 'r ~ '.+' + ~ +l„)7a'+gM*~c' w' .~
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FIG. 1. Poincare surface of section for the hydrogen atom
in a magnetic field (or for the equivalent oscillator problem).
%e draw the energy of the u oscillator A = p„'+ u' vs its
phase P = tan '(p„/u) (section is defined by p„=0). (a)
Section showing the low-field regular regime (i8=0.8). (b)
Section showing the high-field chaotic regime (i8 = 70).

for our system. In zero field (7 =)~ =0), Ho is the
Hamiltonian of a pair of uncoupled oscillators. One
readily deduces the usual Coulomb spectrum

E= —I/2e2= —1/2(n + n +1)2

(n„„n„non-negative integers). For finite A. , we calcu-
late the eigenvalues of Ho by performing a diagonaliza-
tion in a truncated oscillator basis. The matrix ele-
ments of the coupling u2u2(u2+ u') can be easily cal-
culated by use of group-theoretical techniques. 6

The matrix representing Ho in an oscillator basis has
a band structure which allows efficient truncation and
numerical diagonalization. One obtains the different
eigenvalues e for a given A. . This gives the spectrum
for the oscillator problem.

The convergence of the eigenvalues can be checked
by variation of the size of the basis or by variation of
the frequency of the oscillator basis (upon which the
band structure of the matrix remains stable). 3 We
used matrices of dimension up to 3025. All the eigen-
values used in the statistics presented below have an
accuracy of better than 1% of the mean spacing.

In order to obtain the energy-level statistics for the
real physical problem, we also calculated the spectrum
for the hydrogen problem; that is, for fixed 7 (instead
of fixed X). This can be done with Eq. (3) rewritten
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1 2 1 t) 1 t)+ + — + ~ p2i 2(p2+v2) —2 t%") = E(p,2+v2) tW).
t)p,

2 p, /AIL ctp P t)v 8
(12)

This equation represents a generalized eigenvalue
problem [of the type (A —XB)t4) =0] for the energy
E. In an oscillator basis, both A and Boperators have
a band structure. Using the Crawford algorithm, 9 we
numerically calculated the different energies E for
fixed values of 7 (in a way analogous to that in Ref. 6
and Clark and Taylor'0).

We now turn to the results concerning the energy-
level fluctuations and first consider the nearest-
neighbor spacing distribution for both the oscillator
problem (eigenvalues e for fixed X) and the hydrogen
problem (eigenvalues E for fixed 7 ). The mean spac-
ing can be determined either by means of a semiclassi-
cal approximation or equivalently by fitting of the nu-
merical results with a smooth curve. The results are
insensitive to the fitting.

In the regular regime, as expected, we find a Pois-
sonian distribution of spacings for both the oscillator
problem and the hydrogen problem. This is associated
with the existence of an approximate symmetry in this
regime. " This is illustrated in Fig. 2 showing spacing
distributions obtained for the oscillator problem and
the real physical system (hydrogen atom in a magnetic
field). The statistical significance is increased by the
superposition of several spectra for different values of
h. or 7. These distributions are clearly of Poissonian
type, characterized by the existence of many small
spacings. This is the manifestation of an underlying

t

dynamical symmetry valid in the low-field hmit which
makes the different energy levels nearly cross. "

However, we tested the agreement with the Pois-
sonian distribution by performing a X2 test on the first
twenty classes of the histogram (each of width 0.1 of
the mean spacing) and a Kolmogorov-Smirnov test on
the distribution (that is, testing the maximum distance
between the integrated distribution and the theoretical
one) and found signficant deviations. This is due to
the degeneracy of the zero-field energy levels, and can
be understood by use of the semiclassical arguments of
Berry. '2

The spacing distributions in the chaotic regime are
displayed in Fig. 3. They are clearly of Wigner type
and exhibit the well-known phenomena of level repul-
sion (very little number of small spacings). This is the
manifestation of the destruction of the dynamical sym-
metry and the onset of chaos which makes all the en-
ergy levels anticross. No significant deviation from
the Wigner distribution is found, by either X2 or
Kolmogorov-Smirnov tests. Because of the large
number of energy-level spacings involved in the distri-
bution of Fig. 3(a) (2958 level spacings), we have ob-
tained, to our knowledge, the most accurate compar-
ison with the Wigner distribution ever obtained. The
correlation coefficients between two adjacent spacings
are C= —0.28+0.02 (for the oscillator system) and
C= —0.31+0.03 (for the hydrogen in a magnetic
field), in good agreement with the GOE prediction

""P(S)

0.5
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FIG. 2. Nearest-neighbor spacing histogram in the regular
regime (0.4 &P ) 0.8) together with the Poisson (solid
line) and Wigner (dashed line) distributions. (a) 9095
energy-leve} spacings of the oscillator probiem (16 spectra
superimposed, X ranging from 9.2x10 ' to 1.22x10 ~).
(b) 4047 energy-level spacings of the real physical problem

(hydrogen atom in a magnetic field) (16 spectra superim-
posed, y ranging from l.sx10 6 to 1.8x10 6).

FIG. 3. Nearest-neighbor spacing histogram in the chaotic
regime (P & 60.638) together with the Wigner (solid line)
and Poisson (dashed line) distributions. (a) 29S8 energy-
level spacings of the oscillator problem (15 spectra superim-
posed X ranging from 3.5x10 ' to 7x10 '). (b) 1294
energy-level spacings of the real physical problem (27 spectra
superimposed, y ranging from 3 x 10 ' to 2 x 10 ~).
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FIG. 4. b, 3 statistics of the spectrum (spectral rigidity).

(a) Oscillator system in the regular regime. The solid line is

the Poisson prediction. (b) Real physical problem (hydro-

gen in a magnetic field) in the chaotic regime. The solid line

is the GOE prediction.

C = —0.27.
Finally, a further test has been performed: We cal-

culate the so-called "spectral rigidity,
" that is, the A3

statistic measuring the long-range correlation of the

spectrum. '3 Figure 4(a) shows the b, 3 statistics ob-

tained in the regular regime for the real physical prob-

lem (hydrogen atom in a magnetic field). Agreement
with the Poisson prediction b,3(L ) = L/15 is excellent

up to L =10 where a saturation effect appears, in

agreement with the prediction of Berry. '2 Figure 4(b)
displays the h3 statistics in the chaotic regime for the
oscillator system [sample as in Fig. 3(b)). Again,
agreement with the GOE predictions' is excellent.
This proves that, in the chaotic regime, the spectrum
is surprisingly more rigid than in the regular one [the
GOE asymptotic prediction (large L) is 53(L) = (1/
sr') ln L ].t

In conclusion, through the numerical study of the
energy-level fluctuations in the problem of a hydrogen
atom in a magnetic field, we have demonstrated that

the transition to chaos in the classical problem is asso-
ciated with a profound change in the statistics. In the
regular regime, the agreement with the Poisson model

is good, while in the chaotic regime predictions from
the GOE model based on random-matrix theory agree
excellently with our results, both for the coupled-
oscillators system and the real atomic system. This

supports the conjecture of Bohigas, Giannoni, and
Schmit2 on the universality of energy-level fluctua-
tions and suggests that the hydrogen atom in a mag-
netic field may serve as an ideal system for an experi-
mental study of quantum chaos.
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under Centre National de la Recherche Scientifique
Contract No. GRECO 70 and Direction des Re-
cherches, Etudes et Techniques Contract No. 81533.
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