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An approximate analytic calculation of O(Zu2) corrections to Fermi decays is presented. When
the analysis of Koslowksy et a/. is modified to take into account the new results, it is found that
each of the eight accurately studied s t values differs from the average by l~, thus significantly
improving the comparison of experiments with conserved-vector-current predictions. The new & t
values are lo~er than before, which also brings experiments into very good agreement with the
three-generation standard model, at the level of its quantum corrections.
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The analysis of the superallowed Fermi transitions
has long been one of the cornerstones in the study of
the weak interactions. At present it plays a basic role
in the verification of the standard model (SM), at the
level of its quantum corrections. '2 In recent years,
experiments in this area have attained great precision
( =0.1'/0) and, at this level, a sharp discrepancy has
been found between the four low-Z and the four
high- Z decays. '4

General considerations Mo.—tivated by the experi-
mental situation and compelling theoretical arguments
explained below, we have undertaken the task of reex-
amining the O(Zn2) corrections to Fermi decays.
These are defined as the residual O(Za2) corrections
not contained in the product F(Z,E)(1+Bi) where
F(Z,E) is the Fermi function and Si the O(n) correc-
tion. ' The problem of evaluating the O(Za2) as well
as O(Z~a ) corrections was tackled in the influential
papers of Jaus and Rasches (to be called I) and Jaus6
(to be called II). It was the great merit of these au-
thors to have developed a systematic method to treat

these corrections perturbatively, in the framework of
the independent-particle model. However, the results
obtained in these pioneering papers face, in our
opinion, severe difficulties when confronted with
theoretical expectations based on general theorems of
perturbative quantum field theory. We discuss first
salient features of the calculation and results. The cru-
cial diagrams are depicted in Fig. 1. Here q stands for
the momentum of the Coulombic photon interacting
with the daughter nucleus, while k represents the
momentum of the usual four-dimensional photon.
There is a second class of diagrams, shown in Fig. 2.
The combination of graphs in Fig. 1 is finite in both
the ultraviolet and infrared domains. The same is true
of the diagrams of Fig. 2 after charge renormalization
[which affects Fig. 2(a)] and mass renormalization
which must be included in Fig. 2(b). For this reason
and the observation that all relevant mass scales are(( ntii, we may treat these O(Zn2) contributions in
the local Fermi theory. According to I, when the
daughter nucleus is regarded as a point particle, the
graphs in Fig. 1 lead to a large contribution to the de-
cay rate, namely Z~ In(M/m), where M and rn are
the proton and positron masses, respectively. After
the finite nuclear size is taken into account (II), M is
essentially replaced by A=&6/a, where a is the rms
radius of the charge distribution of the daughter nu-
cleus. As we will see, our own calculations have con-
firmed the coefficient of the high-frequency logarithm
proportional to InMor InA. Now we pose a theoretical
question: Knowing the coefficient of lnM in the
corrections to the total decay rate, can we determine

p

FIG. 1. Leading corrections of O(Za2). In (a) one sub-
tracts from the diagram on the left the same diagram with q
set equal to zero in the indicated propagator.

(b) (c)
FIG. 2. Nonleading corrections of O(Za')
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M 25P = POZa ln ——ln
2E~ 3

2E +c+. . . (I)

for a point daughter nucleus and a similar expression
with M A when the finite nuclear size is considered.
Here the bars over b, Pand Po denote integration over
the positron spectrum, c is a constant, and the ellipses
stand for terms that vanish as m/E 0 as well as
very small energy-dependent contributions of O(E /
M, E /A). Neglecting terms that vanish as m/E 0
corresponds to treatment of the positrons in the ex-
treme relativistic approximation (ERA). Because in all

on the basis of general principles the coefficients of
the other possible logarithms, lnE and Inm, in the
limit m/E 07 (In this paper Eand E are the rela-
tivistic energy of the positron and its maximum value„
respectively. ) The answer is yes! One simply invokes
the theorems on cancellation of mass singularities for
total decay rates. If F(Z,E) is expanded in powers of
the bare charge eo, there are no m singularities in the
corrections to the total decay rate. Thus, in this case
the only rn singularities are induced by renormaliza-
tion. To obtain the coefficient of Inrn we simply ex-
pand: F(Z,E) = I —nZa'o/P+. . . (no—= e02/4n') and
insert 0.0 =a [1+(2a/3n ) In(1/m ) +. . .]. Clearly, in
our case the m singularity is associated with the renor-
malization of the vacuum-polarization graph of Fig,
2(a). With knowledge of the coefficients of lnM and
Inrn, the coefficient of InE is determined and we
reach the conclusion that the corrections to the total
decay rate must be of the form

the accurately measured superallowed decays the posi-
tron is relativistic throughout most of the spectrum,
this is expected to be a good approximation, especially
for the high-Z nuclei. The first term in Eq. (I) and
part of c arise from Fig. I, while the second term and
the remainder of c derive from Fig. 2. It is very diffi-
cult to reconcile the results of (I) and (II) with Eq.
(I). The contribution from Fig. I was expressed in
those papers as Zn2[ln(M/rn) + ho(Eo) ], where
Eo= E /—rn. The term 50(EO) was evaluated numeri-
cally and found to be a positive and monotonically in
creasing function of Eo. Instead, from Eq. (1) one ex-
pects that the contributions from Fig. I are of the form

Zn' [In( M/2E ) + c'+. . .]
= Zu2[1n(M/rn) —ln(2EO) + c'+. . . ]

and that, therefore, bo(E0) should be a monotonicaiiy
decreasing function of Eo. Moreover, unless c' is a
large positive constant one expects bo(EO) to be nega-
tive, especially for the high-Z cases. The determina-
tion of c and c' requires a detailed calculation that we
now describe.

Derailed calculation. Our sta—rting point is the con-
sideration of Fig. 1 for a point daughter nucleus. The
finite-nuclear-size effect will be discussed later. It will
suffice for our purposes to retain only terms of leading
order in M because the other contributions involve ad-
ditional powers of k and q and, as explained in II, are
suppressed by small factors of O(A/M) when the fin-
ite nuclear size is considered. After evaluating the
two-loop integrals over k and q and performing the ap-
propriate traces we find for the contribution of Fig. I
at the level of the positron spectrum

dv t dz 8(A —L2u )tan ' +0(L u —3 )m/2+. . .

where L is the three-momentum of the positron,
= A2/u(1 —u), A2=a02 —L2(1 —uv)2, X=—(A

—L2v2)ti2, and, following the notation of I, ao ———Mu
xv(l —z)+E(1—uv). The ellipsis represents sub-
dominant contributions which are not exhibited for
brevity. The three-dimensional integrals can be per-
formed analytically in the ERA [followed by the
neglect of very small terms of O(E/M)]. Including
the subdominant contributions we find

AP2 = POZA [ 3 ln(2E/rn) + —,
' 7r' ——,

' ].
Combining (3) and (4) yields

T

bP 2 M=Zn ln 21 2E 43
3 rn 18

(4)

(5)

diagrams from Fig. 2 are much less important numeri-
cally. We find in the ERA

hP) = Po Zo. 2 [In(M/2E) + 5/2 —7r2/6]. (3)
averaging over the positron spectrum, 8

The opposite (nonrelativistic) limit is obtained by our
setting L = 0 in Eq. (2) leading to EPi = POZo2
x [In(M/m)+4 —6ln2]. Writing the answer in the
form b, Pi/Po= Zn2[1n(M/E)+g(E)], we see that
f(E) varies from a small positive constant ( = 0.16)
in the extreme relativistic domain to a small negative
one (= —0.16) in the NR limit. This indicates that
In(M/E) is by far the dominant contribution. The

= Zo.'ln —-ln +, (6)
3 rn 36

or, recalling Eo= E /m, —
f

( = Z~ ln — ——ln(2EO) +M 5 133
m 3
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Noting that (hP/P ) =/) P/P, we see that Eq. (6) is
in agreement with the theoretically expected Eq. (1)
and furthermore determines c. The constant c' is ob-
tained by the averaging of Eq. (3): c'= —', —m2/6

+ —'„' = 1.64. Thus —ln(2E(i) + c' is negative for the
eight decays; this leads us to the expectation that the
function 50(Eo) introduced in I should bear the same
sign, which confirms the suggestions at the close of
our general considerations above. We consider now
the effects arising from the finite nuclear size.
Neglecting terms of O(A/M) we find for the fraction-
al correction

6 = Zar ( 1 —y —In( Ma )—4af~ p ( r ) rr )n( rl a )dr ),

where y =0.5772 and p(r) is the nuclear charge densi-
ty of the daughter nucleus. We have evaluated b, for
two commonly used distributions: (i)

p(r) = const&& (1+nk /a2) e

with k2= 3(2+ 5tr)/2(2+ 3n) which, with a = (Z
—2)/3, fits very well several nuclei from 4He to 'sO

and has been also applied'o up to Z = 26; (ii) a uni-
formly charged sphere of radius R [a = ( —', )' 2R ]. For
(i) 5 becomes

S = —Zn'[In(M/A) +K, (Z) ], (8)
where

Ki(Z) —= —,
' [y+ ln(3/2k') +2n/(2+3n) ]

is a small constant varying from 0.33 for Z = 7 to 0.36
for Z=26. For (ii), b, is given by an expression
analogous to Eq. (8) with Ki ( Z) replaced by
K2(Z) =p 3 + 2 ln10=0.40. The variation in K is

negligible; we will use Eq. (8) with Ki(Z) =0.35 and
a = ( —', )' 2rt)A'/3 fm (or, equivalently, M/A= roA' 3/

0.665); ro is given by Wilkinson. "
The sum (&2(E)) of (7) and (8) is our final expres-

sion for the O(Zn2) corrections' and is given numer-
ically in Table I. It ranges from 0.21'/o for '40 to
0.44'/o for 54Co while the corresponding correction re-
ported in (II) varies from 0.26'/o to 0.93'/o. As ex-
plained at the end of our general considerations and in
the discussion after Eq. (7) the main difference can be
traced to the evaluation of the function bo(Eo) arising
from Fig. 1.'3 A more physical way of characterizing
the difference is the following: While papers I and II
state that the leading contribution is given by
Za21n(M/m), our analysis indicates that the dom-
inant contribution to the spectrum is roughly
Za2 ln(A/E), a significantly different logarithm!

It would be very useful to have an estimate of the
corrections of O(Z2o. 3) [defined as the residual con-
tributions not contained in F(Z,E)(1+St+52)]. The
three-loop calculation is by no means trivial. Doing a
partial calculation, Jaus managed in II to evaluate the
coefficient of the ultraviolet logarithm that arises from
the diagrams analogous to Fig. 1 (with one additional
Coulombic photon attached to the positron). On the
basis of our previous discussion we will identify it as
ln(A/E). There should exist other logarithms involv-
ing m singularities induced by renormalization. Their
coefficients can be determined by expansion of
F(Z,E) to higher orders in Za() and expression of no
in terms of tt. In an incomplete calculation accom-
panying mass scales are determined heuristically. A
rough estimate that includes the m singularities as well
as Jaus's logarithmic term is'4

53HE= Z'a'[a ln(A/E) + bf(E) + dg(E) + h ln(2Eti)1,

where

g =1.232, b= (4/3m)( '4' —y —m /6), d=4/3sr, f(E) =In(2E~/m) —5/6,

g(E) —= —,
' [in (Rm) —ln (2E/m))+ ( —,

' ) ln(2RE) R = ( —')'/2tt

TABLE I. Fractional radiative corrections (in percent) and J t values.

140
26A~m

34C~

38Knt

42SC

46y

54CO

AYg.
CL

1.29
1.11
1.00
0.96
0.94
0.90
0.87
0.84

0.21
0.30
0.35
0.37
0.40
0.41
0.43
0.44

0.02
0.04
0.06
0.07
0.08
0.10
0.11
0.12

3075.5 + 3.9
3072.9 + 3.7
3076.9 + 4.7
3076.6 +4.6
3089.3 + 7.5
3088.6 + 4.3
3085.9 + 5.7
3087.5 +4.4
3080.1 + 2.4

3'/o

3073.4 + 3.9
3066.9 + 3.9
3066.9 + 5.0
3064.2 + 5.1

3074.7 + 7.9
3071.3 + 5.2
3066.2 + 6.5
3065.4 + 5.7
3068.6 + 1.8

800/o

'Taken from Ref. 4.
ModiTied values obtained in this paper on the basis of (S'/+ST); (S)I' ) has been included as a

theoretical error (see text). The theory predicts ~(=const.
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(a)
(b)
(c)
(d)

0.9740 +0.0015
0.9745 +0.0013
0.9748 +0.0011
0.9747 +0.0011

0.9971 +0.0031
0.9981+0.0027
0.9986+0.0023
0.9984+0.0023

and h = —0.649 is a constant adjusted to cancel spuri-
ous m singularities induced by the factorization
F(Z,E) [I + &i(E) +. . .1. The quantity (SP(E))
(HE means "heuristic estimate"') is given numerically
in Table I. It will be used as an estimate of the error
made in stopping the calculation at O(Zn2). Table I
lists also (SP), the "outer part" of the O(a) correc-
tion. 2 "'5 The "inner corrections" (which depend on
inz but not E ) are sizable in the SM' so that Si is
considerably larger than SII'".

Test of conservation of vector currents. —The p t
values from Ref. 4 and the ones obtained by applica-
tion of the new O(Za ) corrections are listed in the
last two columns of Table I. We have increased the er-
rors in the new &t values by combining (SP) in qua-
drature with the errors quoted in Ref. 4.'6 We see that
the overall pattern is much better than the previous
one. Seven of the pl values differ from the new
weighted average by & la, while '~O differs by 1.2o.
The X2/v for the old and new fits are 2.2 and 0.55,
respectively, for v = 7 degrees of freedom, correspond-
ing to confidence levels (CL) of 3'/0 and 80'/0, respec-
tively. If (SP) is not included in the error, the CL is
slightly reduced to 72%. The two lowest-Z values are
now further apart, but their average of 3070.2+2.8 s
is close to the overall average. The weighted averages
of the four low-Z and the four high-Z values are now
3068.4+2.2 s and 3069.0+3.1 s, respectively. Thus,
the sharp discrepancy pointed out in Refs. 3 and 4 has
disappeared.

Test of the SM Table I.—I lists the values of V~ and
V~2+ V2+ V~2 based on various combinations of the
new 9 t values and V~ =0.220 + 0.002.'7 The treat-
ment of the inner corrections and the calculation of er-
rors is the same as in Ref. 2.'6 It is apparent from
Table II that there is now very good agreement
between a large number of experiments and the
three-generation SM, at the level of its quantum
corrections. If the latter were not included, the unitar-

ity bound would be exceeded by = 3.7'/0 and the SM
would not be tenable! In spite of the small errors, the
possibility of a fourth generation with substantial mix-
ing2 is still open. For example, using the last entry in

TABLE II. Values of V~ based on various combinations
of xi values obtained in this paper. (a) '~O. (b) Average of
'40 and 26A1 . (c) Average of four low-Z decays. (d) Aver-

age of 8 decays. The last column tests the three-generation
SM at the level of its quantum corrections which are —4%.
The theory predicts 1.

V~2+ V2 + V„~b

Table II, one finds
~
V, )

~ 0.064 (90% CL). It will be

interesting to use these ca1culations to put sharp con-
straints on various types of new physics, as competing
theories must match the SM at a high level of pre-
cision. On the experimental side, it would be impor-
tant to measure accurately ioC is and 7r p decay to veri-

fy the consistent trend portrayed in the last column of
Table I.
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