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Time Variation of Newton's Gravitational Constant in Superstring Theories
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The present time variation of coupling constants in superstring theories with currently favorable
internal backgrounds critically depends on the shape of the potential for the size of the internal
space. If the potential is almost flat, as in perturbation theory to all orders, the value of G/G for
Newton's gravitational constant is calculable and estimated to be —1x 10 "-+'

yr '. lf the poten-
tial has a minimum with finite curvature due to unknown nonperturbative effects, G/G will be-
come unobservably small. Improvement of the measurement of G/G would discriminate between
the two situations. Problems with the time variation of other coupling constants are also discussed.

PACS numbers: 12.10.6q, 04.50.+h, 06.20,Jr, 98.80.Dr

The time variation of fundamental constants may
provide a connection between cosmology and particle
physics. This idea can be traced back to Dirac, '

although his original proposal for variation in
Newton s gravitational constant G seems not support-
ed by observations. 2

Very recently superstring theories appear to be
promising candidates for a consistent quantum theory
unifying all known interactions including gravity.
They provide a suitable framework for studying the
time variation of fundamental constants. 5 The con-
sistency of superstring theories fixes the space-time
dimensionality to be ten, six of which form a very
small compact manifold K ( —10 32 cm). The metric
and other bosonic backgrounds in K are constrained by
string-compactification and particle-phenomenology
considerations. 6 7 The coupling constants in the four-
dimensional world are related to those in ten dimen-
sions by a factor of the inverse volume of K. The
cosmology in the more-dimensional universe governs
the evolution of the usual three-space as well as that of
K and, through the latter, dynamically determines the
time variation of coupling constants in four dimen-
sions. Generally in a more-dimensional field-theory
approach, quantum effects in K 9 give rise to an effec-
tive potential which may fix the size of the internal
space R6 in vacuum and influences its cosmological
evolution. But in superstring theories, %itten s non-
renormalization theorem'0 tells us that such a potential
for R6 is flat up to all orders in perturbation theory.
So far, the study of nonperturbative supersymmetry-
breaking effects, "'2 including world-sheet instantons,
also has failed to produce a potential with a minimum
at finite R6, whose existence is expected by the con-

ventional wisdom.
In this Letter we will show that the time variation of

coupling constants critically depends on the shape of
this potential. If the potential is flat the present value
of G/G is calculable; for example, for an open
universe

(G/G)o= (qo 130oHo2to2/8)/to

where Ho is the Hubble constant, to the age of the
universe, qo the deceleration parameter, and Qo=87r
x Gopo/3Hoz the density parameter. Here po is the
density in ordinary three-space and the subscript 0
denotes the present value of the quantity. We esti-
mate (G/G)o to be in the range

(G/G) 1 x 10—11+1 y1.
—1

which overlaps the present observational upper
bound'3

IG/Gl lx 10 "yr '.

However, if the potential really has a minimum at fin-
ite R6, (G/G)o will be suppressed and become unob-
servably small. So an improvement on the measure-
ments of G/G will give us important information
about the shape of the potential. Here ~e concentrate
on G/G, since theoretically it is independent of the di-
lation fteld and experimentally extracting it from data
is simple and direct. Some remarks about time varia-
tion of other coupling constants in superstring theories
are given at the end of the Letter.

We start with the following equations of motion in
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ten dimensions:

R~a —
& g~aR = TKio4 "'(~~MNHa —6g~aHMNP)+9Kio& (@ "'H~pgRMs'~)

+ 8@ '[rl~&t)a@ —2g~a(i)M@)']++3'QKio& "'(T«~MFa —4g~aTrFMN)

+ —, Kto4 / f —,
'

gg/3(RMNPQ
—4RMN+ R ) —2RR„/3

+4RwMRa +4R~MffNR 2R—q RaMNP]+&io~qff, (4)

(@
—3/2HMNP) 0

(@
—3/4FMPa) + 9K2 (@

—3/2F aHMNP)

6&M(4 '& 4)+64 '(t)M@)'+«top HMNP+&tof [ TrFMN —(RMNpg —4RM2N+R2)]=0,

(5)

(7)

whet'e A, B,M, N = 0, 1, . . . , 9; ggif, lib, FMN, and HMNp are the metric, dilation, Yang-Mills, and Kalb-Ramond
strengths. T„fi is the thermal energy-momentum tensor; we have neglected the effects of matter on other bosonic
backgrounds. &io is the gravitational constant in ten dimensions. These equations can be derived from the follow
ing action in the field-theory limit of superstring theories'4:

" io , R ——&to& ''HMNP
2gzio 4 16 zzio

TrFMN —(RMNpg —4RMN+ R ) +X f '. (8)

In addition, the following Bianchi identity has to be
satisfied":

dH =trR AR —
+, TrFA F.

case (10), as in the static case.6 We also assume

T„a= diag(p, pg;, p'g „). (12)

g~„(y) is Calabi-Yau,

H, =0 (M, W, P=0, . . . , 9),

FMN f = R~„ f' if (M, A') = (m, n),
= 0 otherwise,

@= const,

(1 la)

(»b)

(1 lc)

(1 ld)

where ~,P are internal-space vieibein indices. It is the
same as the static vacuum configuration of Ref. 6 ex-
cept for the metric (10). One can alter Eq. (lib) such
that both the internal HMNp'6' and an appropriate
gluino condensate become nonvanishing and their
contributions to the cosmological constant cancel.
Alternatively, (lla) can be relaxed: g (y) is Ricci
flat. These changes would not affect the following dis-
cussion of R3(f), R6(f), and 6/G, but supersym-
metry in four dimensions would be broken. The key
observation5's is that the Ansafze (lla)-(lid) make
Eqs. (5), (6), and (9) satisfied in the time-dependent

We assume that the cosmological metric is of the
rm

gMN =diag[ —1,R32 (f)gf~(x), R62 (f)g~„(y)], (10)

where ij =1,2, 3; m, n=4, . . . , 9; R3(f) and R6(f)
are the scale factors. g~&(x) is assumed to be maximal-

ly symmetric in three-space. For g „(y) and other bo-
sonic backgrounds we will adopt the following Ansafz:

In the matter-dominant era, p = p'=0. '9 The conser-
vation of off gives

p(f)R33 (f)R$ (f) =const.

[We have normalized g „(y) such that f d6y
x (detg)i/2=1 ]

With the above Ansafze and assumptions and ne-
glecting terms of order ~to/f ~ (fp/f)' (where fp—10 43 sec is the Planck time), the dilation Eq. (7) is
satisfied and the Einstein equations (4) become

~ ~

2R3 + R6 7 KloPO R3(fo)
R3 R6 24 R6 R3( f)

2R3 R3R6 1 ~topo R3( fii)+6
R R3R6 8 R6 R3(f)

~ ~

2k
R2 R3

R6 R6 R3R6 1 Kiopo R3(fQ)
'2 2 '3

(17)R3 ( f ) = f + c, R6( f ) = R6Q = Collst.

Now we assume that po can be treated as a small quan-

where we have Used R =
4 K~op', k is the Robertson-

Walker parameter.
For an open universe (k= —1), in the large flimit-

we have the following asymptotic solution, 5 which is
stable under perturbations:
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tity. Define r3(t) and r6(t) by

R, (t) = (t+ c) [1+r3(t) ],
(18)

R, (t) = R6p[1+ r6( t) ],
and treat them as small quantities. Up to first order,
Eqs. (14)—(16) are reduced to linear differential equa-
tions for r3(t) and r6(t) with ~4(t) = 8tr G(t) = Ktp/
R66 (t) replaced by ~42(tp) —= 8m Gp. The solution is

r3 ( t ) = ——fl p Hp tp
5 . 2 3ln(ht) b

f2

r6(t) = ——fIpHp tp
—+3 231 6

6t' '

(19a)

(19b)

where h and b are integration constants and we have
made the change t+ c t From. qp=— —(R3R3/R3)p
one can determine b. The final result for (G/G)p
= —6r6(tp) is given by Eq. (1). The parameter tp may
differ from the age of the universe by a factor of order
1 which we will neglect.

Astronomical observations have produced quite
diverse values for the cosmological parameters Qp,
Hp, qp, and tp. (For details„see Rowan-Robinson. 2p)

Using the most "satisfactory'" set of parameters rec-
ommended by Ref. 20, i.e., ( Qp, qp, Hp) = (0.05,
0.025, 67 km sec ' MPc ') and tp= 1.6x 10tP yr, we
obtain

(G/G) = —3,6x 10-' yr (20)

The extreme sets are given by (Qp, qp, Hp) = (0.05,
—0.925, 100 km sec ' Mpc ') and (I, 0.5, 40 km
sec ' Mpc ' ). Correspondingly„

( G/ G), = —7.» 10-" yr- '

only relevant cosmological time scale, (G/G)p must
be proportional to I/tp with a coefficient of order unity
or, probably, one to two orders lower.

Now assume that there is an effective potential term
for R6 due to unknown nonperturbative quantum ef-
fects in the action (8). If the potential is flat near R6p,
the result is the same as given above. If the potential
has a minimum for finite R6, R6p must be located
there. To first order, it adds a term p, 2r6(t) to the
left-hand side of Eq. (16), where the mass p, is deter-
mined by the curvature of the potential at R6p. If we
assume (p, t)2 )) 1, then

re(t) = —
8 ApHp2tp3 + t 3/'A cos(p, t+5).

p, t

(19c)
The second term is oscillatory and vanishes after being
averaged over the period 2n/p. The first term, com-
pared to that in Eq. (19b), is suppressed by the factor
(p, tp) = [(10 32 eV)/p, ]2. So a very tiny mass p,
would make (G/G)p in this case unobservably small.
The conventional wisdom favors a not very small p„
since in four dimensions r6 represents a Brans-
Dicke-type2' scalar field which would compete with
gravitons and would have been observed if it is mass-
less. However, the coupling of this field to matter
might be anomalously weak; if so, a fiat potential for
r6 is not in conflict with observations.

As for the time variation of particle-physics con-
stants, such as a and strong or weak coupling con-
stants, including the masses of the electron and pro-
ton„etc. , the following remarks are in order. First, the
time dependence of R6 will lead also to a variation in
the grand unification (GU) coupling constant

or —1.2 x 10 " yr (21) aoU(R6- i ) =
gG2U (R6

—i )/4m =$3/I4R6-6/4vr (22)

Thus we estimate the range for (G/G)p as given by

Eq. (2).
Rigorously speaking, if Qp is close to I, the above

perturbation calculation breaks down. One needs to
use a computer for solving Eqs. (14)-(16), but this
would not change the estimation (2). The same is ex-
pected to be true for k=0 or k= + I cases. The key
point here is that Eq. (16) with pp&0 does not allow

i

�R6

= 0. Thus G/G = —6R6/R6&0. Since tp is the

which, in turn, gives rise to a variation in almost every
coupling constant and mass measured at low energies.
This is an important feature of unified string theories,
in constrast to the usual assumption made in previous
analyses of experimental data that only the quantity
considered is varying alone. Second, there is a
renormalization-group (RG) running of coupling con-
stants, 22 which relates those measured at low energy p,

( (& R6 ' ) to noU(R6 ' ) calculated from Eq. (22) as
follows:

'(p, ) =n, '(R6 ' ) ——$ Cg ln +&(p —mJ)ln
1 1 Pl~

rrtJR6 p
(23)

wl ere i = I, 2, and 3 correspond to U(1), , SU(2)„, and SU(3), ; the sum is over j= leptons, quarks, gluons,
8'+ etc. The C, are well-known numbers depending on the spin and group representation of the jth particle. If
one neglects the variation of the second term, then

(~, (p, ) n,.(p) no„(R6 ' ) o';(p) G

At(p) aoU(R6 ) o'oU(R6 )
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For n this is two orders of magnitude lower than G/G.
Thus, though both G and atomic clocks vary in the
time defined by the metric (10), the latter probably
varies more slowly. Similarly, there is also RG run-

ning of particle masses which, however, depends very
much on the presence or absence of heavy families. z3

Also, as shown in Eq. (22), the time dependence of
the background @, which might arise upon appropriate
modification of our Ansatz, would lead to an extra con-
tribution to aGU/uoU. It might be important to in-
clude this in considering the variation of, e.g. , a over a
long period such as 5x109 yr, as in some previous
determinations of oi/oi

In conclusion, further improvement in measuring
G/G can discriminate between different shapes of the
potential in superstring theories for the size of internal
space. If the potential is almost flat or has no
minimum for finite R6, probably we are on the edge of
observing G/G. We encourage that old data be
reanalyzed and new experiments be done. Especially,
new clever ideas for precise short-time laboratory ex-
periments would be most welcome.
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