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We solve exactly the problem of diffusion in an arbitrary hierarchical space. We prove that for a
given "tree silhouette" 0 & s & 1 the dynamic critical exponent v ranges from s/(1 —s), for either
uniformly or randomly multifurcating trees, to s for the most diverse ones, in qualitative agreement
with a static measure of the tree's complexity. We conclude that uniform trees are optimal for in-
formation diffusion, that in thermally activated processes the temperature dependence of v varies
with the underlying tree structure, and that thin elongated trees are the only ones capable of pro-
ducing a 1/fspectrum.
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Many natural and artificial systems have an exact or
approximate hierarchical organization. ' To model the
relaxational dynamics of such systems, several authors
have recently studied diffusive processes on hierarchi-
cal structures. 2 5 Their analysis, however, only applied
to the simple case of uniformly multifurcating trees,
whose intrinsic self-similarity allows in particular for
the use of renormalization-group techniques. 6 But
hierarchical structures need not be self-similar. For
example, the ground states of the mean-field spin-
glass, which possess an ultrametric topology, are
known to carry different weights. 7 a In a more general
context, it is precisely the absence of self-similarity
that accounts for the complexity of hierarchical struc-
tures such as biological organisms and social organiza-
tions.

It is therefore desirable to determine how the relaxa-
tional dynamics of a hierarchical system depend on its
underlying tree structure. This Letter reports the
results of such a study. By exactly solving the equa-
tion of diffusion in a generic hierarchical space, we
have shown that for a given tree silhouette (to be de-
fined below) relaxation is fastest for either uniformly
or randomly multifurcating structures and slowest for
very diverse ones, in qualitative agreement ~ith a stat-
ic measure of the tree's complexity. 9 Corollaries of

these results include the identification of infinitely
thin elongated trees ("brooms") as the only ones ca-
pable of producing a 1/f spectrum, and the realization
that in thermally activated processes, the underlying
tree structure can be revealed by the temperature
dependence of the dynamic critical exponent v.

Consider ultradiffusion in an arbitrary hierarchical
space. The dynamical equation is given by

dP )v

X etjPj ~ (I)
t

where i = 1, . . . , N labels the leaves of some arbitrary
tree, P, is the occupation probability for site i, and the
hopping rate ett is only a function of the nearest com-
mon ancestor A of iand jon the tree: e,j=ajt 'EA(t j)
for i&j, while a„= —Xj~tett, thus conserving proba-
bility. By appropriately stretching the tree, we can al-

ways assume that ez = e ", where hz is the height of
the branching point A from the bottom of the tree, as
shown in Fig. 1(a). We call such trees "inetric trees, "
to stress that not only their topology but also the
heights of their branches matter. There is clearly one
ultrametric space and one ultradiffusion problem for
every metric tree. Note also that there is no loss of
generality in having assumed symmetric transition
probabilities, since the weight of any leaf can be effec-
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(:~=8~= rPPt between the descendants of 8 and those of all his
brothers. Its eigenvalue (or inverse characteristic
time) depends only on the father Bi

root —hg
'

Ns, e '+ $(Ns —Ns, )e '", (3)
8=2

FIG. l. (a) A generic tree illustrating our notation; the
root is the father of 8~ and C and the grandfather of 8; 8~
has three sons and seven final descendants. (b) A uniformly
bifurcating tree. (c) A very diverse (non-self-similar) tree,
with the same silhouette as (b). At each generation the
left-half members trifurcate. This tree gives the slowest pos-
sible relaxation, as discussed in the text.

tively increased by letting it multifurcate appropriately
at low altitude.

We have solved the diffusion equation (1) explicit-
ly, by deriving the complete set of eigenvectors and
eigenvalues of the transition matrix e. In order to
describe the results succinctly we first introduce some
notation and terminology [see also Fig. 1(a)): For any
branch point or tree leaf 8, we denote by 8„ its unique
nth ancestor (80= 8 by convention, Bi is the father,
82 the grandfather, and so on), by Ns the number of
final descendants or tree leaves generated by 8 (Ntr
=1 if 8 is itself a leaf), and by Sit the number of im-
mediate offspring or sons of 8, when 8 is a branch
point. We also introduce the characteristic function

1, if i is a descendant of 8
0, otherwise,

where here i = 1, . . . , N runs over the leaves. We as-
sume for convenience that branchings may only occur
at integral multiples of some minimum adjustable
height interval hh, and will occasionally use the word
mth generation for all branches at height h = md h. If
n(h) is their total number, we define the silhouette
slope

Sinn(h) 1
I

n(h)
n(h+ah) '

and shall refer to its asymptotic value s —11mtt $(h)
as the tree's silhouette. Large and small values of s
correspond to fat and thin trees, respectively.

Now, for every leaf or branch point Bother than the
root, there is an eigenvector of e,

V, (8) = N x, (8) -N;, 'x, (8, ), (2)
which corresponds to the exchange of probability

We will be mainly interested in the autocorrelation
function, i.e., the probability that the particle returns
to its point of departure; by use of Eqs. (2) and (4) it
can be written as

root

P, (t)= —+ $N
1 Ni

t

N
tl !

Summing over all initial conditions I, we obtain the
average autocorrelation function in the form

1 1P(t) = —+—
branch points

B

(Sit —1)e

For finite trees the decay of this function is clearly ex-
ponential, and is determined by the smallest nonzero
eigenvalue A. (root). For infinite trees, however, the
asymptotic behavior of P(t) is in general modified by
the accumulation of eigenvalues near zero. In the
remainder of this Letter we shall study the dependence
of this asymptotic behavior on the precise structure of
the tree.

Consider first a regular uniformly multifurcating
tree, 2 s i.e., one for which every branch at every gen-
eration produces b offspring as shown in Fig. 1(b); its
silhouette is thus s = (1/hh)lnb. Since hs = hs

it hit
+ neth and Nit= b, we easily deduce from Eqs.

and i»n fact (Sir, —1)-fold degenerate, since the St,

eigenvectors corresponding to the sons of Bi obey the
linear relation Xb„,„„„N,V(c) =0.

Finally there is an eigenvector with zero eigenvalue
that corresponds to the steady state of equal probabili-

ty 1/N for all sites, and which we denote by V, (root).
The reader can verify these assertions by working

out simple examples; a complete derivation is given in
Bachas and Huberman. '0

For a particle starting out at a leaf 1st time zero, the
initial condition can be written as

root

P,(t-o)=S„= X V, (I„).
n 0

It then follows that at later times

root —r/r i
P, (t) = X V, (l„ i)e "+—.
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(6) and(3) t at

ehh
P(t)= X (b 1—)b- exp —t(b '"-) "uniform

where the dynamic critical exponent

p„„;„, = lnb/(dLh —lnb) = s/(1 —s)

depends only on the silhouette which we have as-

sumed lies in the range 0& s& 1. For s & 1 the
eigenvalues of the transition matrix diverge, and relax-
ation is unstable. Notice, however, that the values
s=0 and 1 are allowed as asymptotic limits reached
from above and below at large h, and leading to loga-
rithmic and stretched exponential decay, respectively.

From Eq. (7) we conclude that among uniform trees
the fatter ones relax faster. We must therefore fix the
tree's silhouette, in order to study the effect of its
structure on dynamics. The following result then
shows that stable relaxation is fastest in uniform trees,
which are therefore optimal for information diffusion.

Theorem 1.—The dynamic critical exponent of any
tree with silhouette 0& s & 1 obeys i ~ s/(1 —s) pro-
vided there exists some w & e so that no branch point

ha-h ))8 has descendants growing faster that iv
~

Sketch of proof. —Using the fact that the average of
exponentials is larger than the exponential of the aver-
age and that

I =n — —n
N a:t~-t

e- sh(eskh 1)
we obtain

P(t) ~ X (es4A 1)e-mb, hse tt~m
(8)

Nt 1

where 7 is the average inverse characteristic time of
the mth generation that can be bounded from above as
follows:

with the summations running over all branch points of
the mth generation.

Using inequality (9) in (8), we can finally bound
P ( t) from below by a function with asymptotic
power-law decay with exponent i „„;r„,Q.E.D.

We next consider random trees, constructed by al-

lowing the multifurcation number x of every branch at
every generation to be an independent random vari-

able with probability distribution p(x). The average
silhouette is

s = (I/Ah)ln(x),

(x) =X„ ip(x)x It will suffice to aveiage
Eq. (S) over all trees, as this automatically takes care
o«veraging over initial conditions. The trick is to
note that a„—= Nt /(x) a"d h~ = (Nt„—Nt„, ~/

(x)" for ~ ) n, (a) are independent random variables,
and (b) converge'2 as n ~ to random variables n
and ha with stationary probability measures Pi (a)
and p (1)5 (b,~) + P2 (he ), respectively. Thus the
summand on the right-hand side of Eq. (5) becomes,
at large n,

T

p(l)+P2 t
, l) n —1,

r T

(x)p(l)+P2 t
l&n,

"N
OOO (x)Pi(~)exp —« Ph

' (n-I)'
tO OO (x)S = (x) -& (x) — P, (n) exp—t~

with P2 the Laplace transform of P2. If the vanishingly small cutoff of the u integration, which comes from
demanding Nt ~ 1, could be removed, the summand would obey the homogeneity relation

S„+i(t)= e '~"S„(texp[(s—l)b, h]),
from which we could deduce that the average autocorrelation function has a power-law decay with exponent
v„„d, = s/(1 —s) =i „„;r„.Using the integral equation that defines Pi, we have in fact shown that the diver-
gence of the o, integration is at most logarithmic, '0 which implies at most lnt modifications to the above power-law
decay. This result can be understood by noticing that both uniform and random trees are balanced, self-similar
structures, and hence relax at roughly the same rate.

In order to show that asymptotic diversity, or lack of balance, does actually lead to slower relaxation, we next
consider a tree for which the left-half members of every generation trifurcate, while each of the right-half
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members only gives rise to a single son, as shown in Fig. 1(c). A straightforward calculation'o then gives a power-
law decay with critical exponent v = ln2/b, h = s. The following theorem shows that, remarkably, this is the slowest
allowed relaxation.

Theorem 2.—The dynamic critical exponent is bounded from below by the silhouette {v~ s).
Proof.—Since Nz ~ 1, we have I/ra ~e, and hence

—ha

P(t) ~ g (s~ —1)exp( —te ) = X [exp(shh) —Ijexp( —nhhs) exp( —te " ")—(1/t)',

Q.E.D.
We summarize our results schematically in Fig. 2.

As can be seen, the dynamic critical exponent is max-
imized (fastest relaxation) by both uniform and ran-
dom trees, and minimized (slowest relaxation) by very
diverse trees. The same qualitative picture actually ob-
tains if instead of —v one plots a static measure of the
tree's complexity, or lack of self-similarity, defined by
counting the number of nonisomorphic pieces at every
generation. 9 This measure should be contrasted with
the information-theoretic measure (Shannon's entro-
py), which is defined by the size of the smallest algo-
rithm that describes how to construct an exact replica
of a given tree, and is thus maximized for random
trees. " A couple of other interesting conclusions fol-
low from our results.

(1) In thermally activated processes etj =exp( —
Vtt/

kT), " and hence, if we assume that the structure of
the tree is not itself a dynamic variable, rescaling the
temperature simply amounts to rescaiing all heights
(uniformly stretching the tree). Thus s is proportional
to T, which implies that v = T/( T, —T) for a uniform
tree, while t = T{ln2/T, 'ln3) for the unbalanced tree
of Fig. 1(c), where the critical temperatures are in
both cases the thresholds above which relaxation be-
comes unstable. We conclude that the temperature
dependence of the critical exponent may reveal the
structure of the underlying tree.

(2) In view of Theorem 2, the relaxation of a
hierarchical system can have a 1/f noise spectrum only
if the underlying tree is a "broom, " i.e., has vanishing

UnifOrm Dl verse Random

FIG. 2. Schematic plot of' the dynamic critical exponent v

vs the Shannon entropy of trees ~ith fixed silhouette s. The
broken lines are rigorous upper and lower bounds. A similar
plot is obtained if —I is replaced by a static measure of com-
plexity that counts nonisomorphic pieces at every level of
the tree (Ref. 9).

silhouette. Of course, any tree would tend to a broom
if infinitely stretched (e.g. , by taking T 0). It is,
however, also possible to construct brooms with finite
hopping rates, by ensuring that the majority of
branches are infertile'o; these can serve as models for
the production of 1/f noise at finite temperature or in
processes that are not thermally activated.

In summary, we have solved exactly the problem of
diffusion in arbitrary hierarchical spaces, and shown
that the dynamic critical exponent has the qualitative
features required for a measure of complexity. Our
study also shows that although asymptotic complexity
(or lack of self-similarity) leads to slower relaxation, a
1/f spectrum cannot be obtained unless the tree has
vanishing silhouette. '4
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