Comment on "Universal Disorder-Induced Transition in the Resistivity Behavior of Strongly Coupled Metals"

Recently, Gurvitch¹ has speculated that there is a universal disorder-induced resistivity $[\rho(T)]$ behavior of strongly coupled metals (with large electron-phonon coupling constant λ). We find that his explanation for universality of $\rho(T)$ behavior is inadequate for the following reasons.

(1) According to the Gurvitch model, a low- T_c compound like A-15 Ti₃Sb ($T_c = 6.5$ K) should not show a T^2 dependence of resistivity at low temperatures. However, the experiments^{2,3} have shown that the $\rho(T)$ of Ti₃Sb indeed shows a T^2 behavior from above T_c to 35 K. Since the λ of Ti₃Sb is about 0.7, its $\rho(T)$ will not fall in the T^2 region in the Gurvitch plot. This will be true even if Ti₃Sb has a large residual resitivity $\rho(0)$.

(2) We find that Gurvitch has not mentioned the recent model proposed by Kaveh and Wiser⁴ to explain the T^2 dependence of $\rho(T)$ of high- T_c A-15 compounds. According to Kaveh and Wiser, this T^2 dependence of $\rho(T)$ is due to electron-electron interaction enhanced by phonon-mediation effects. This effect is expected to weaken at about $\theta_D/10$ and hence the limited temperature range ($\theta_D = 300-400$ K) in which such a power law is observed. This phononmediated electron-electron interaction is very weak in low- T_c compounds and, hence, their $\rho(T)$'s do not exhibit T^2 dependence. In fact, they have claimed that their model agrees with the data obtained by Gurvitch *et al.*^{5,6} on several A-15 compounds.

(3) According to Gurvitch, spin fluctuations are important in VN [which he inferred from his universal curve λ vs $\rho(0)$] which agrees with the theoretical prediction of Rietschel, Winter, and Reichardt.⁷ Rietschel and Winter have shown⁸ that spin fluctuations are also important in pure Nb and found the value of λ to be 1.2. From the Gurvitch¹ curve, one can see that the $\rho(T)$ of Nb should fall in the T^2 region when $\rho(0)$ reaches 40 $\mu \Omega \cdot \text{cm}$. According to Testardi, Poate, and Levinstein,⁹ T_c of Nb is hardly affected by disorder. T_c decreases by about 0.2 K when $\rho(0)$ increases from 0.15 to 35 $\mu \Omega \cdot \text{cm}$. Hence, one can assume that λ does not decrease with disorder (similar to VN). However, there is no evidence so far

that there is a T^2 dependence of $\rho(T)$ of disordered Nb at low temperatures.

(4) We also found that the resistivity of Nb₃Pt¹⁰ does not agree completely with the model proposed by Gurvitch. Although it is true that the $\rho(T)$ of as-cast Nb₃Pt shows a T^5 law, the $\rho(T)$ of heat-treated Nb₃Pt shows a T^3 law at lowest T(12-27 K) and a T^2 law at higher temperatures (24-43 K). Further, our results¹¹ indicate that $\rho(T)$ of Nb₃Au also shows a T^2 behavior.

Hence, we feel that at this stage, one has to collect more data on the resistivity behavior of other A-15 compounds before using the universal curve proposed by Gurvitch to estimate the electron-phonon coupling constant λ .

S. Ramakrishnan and Girish Chandra Tata Institute of Fundamental Research Bombay 400 005, India

Received 10 June 1986 PACS numbers: 72.15.Eb, 74.70.Nr

¹M. Gurvitch, Phys. Rev. Lett. 56, 647 (1986).

²S. Ramakrishnan and G. Chandra, Phys. Lett. **100A**, 441 (1984).

³V. Sankaranarayanan, G. Rangarajan, R. Srinivasan, and K. V. S. Rama Rao, in *Proceedings of the Seventeenth International Conference on Low-Temperature Physics, Karlsruhe, Germany, 1984*, edited by U. Eckern, A. Schmid, W. Weber, and H. Wühl (North-Holland, Amsterdam, 1984), p. 619.

⁴M. Kaveh and N. Wiser, Adv. Phys. **33**, 257 (1984).

⁵M. Gurvitch, A. K. Ghosh, B. L. Gyorffy, H. Lutz, O. F. Kammerer, J. S. Rosner, and M. Strongin, Phys. Rev. B 22, 128 (1980).

⁶M. Gurvitch, A. K. Ghosh, B. L. Gyorffy, H. Lutz, O. F. Kammerer, J. S. Rosner, and M. Strongin, Phys. Rev. Lett. **41**, 1616 (1978).

⁷H. Rietschel, H. Winter, and W. Reichardt, Phys. Rev. B 22, 4284 (1980).

⁸H. Rietschel and H. Winter, Phys. Rev. Lett. **43**, 1256 (1979).

⁹L. R. Testardi, J. M. Poate, and H. Levinstein, Phys. Rev. B 15, 2570 (1977).

 10 R. Caton and R. Viswanathan, Phys. Rev. B 25, 179 (1982).

 11 Girish Chandra, S. Ramakrishnan, and A. K. Nigam, J. Phys. F **16**, 209 (1986).