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Nonnniversality of the Mooij Correlation the Temperature Coefficient
of Electrical Resistivity of Disordered Metals
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(Received 27 August 1986)

By using compiled, updated experimental data, we have demonstrated that the correlation
between the temperature coefficient of electrical resistivity 0, and the resistivity p for disordered
metals at room temperature is not universal. The origin of the nonuniversality of the Mooij corre-
lation stems mostly from a competition between the quantum mechanical effects of incipient locali-
zation and thc classical Boltzmann electron transport. Results of a numerical analysis based on lo-
calization indicate that there is a unique and monotonic correlation between o, and p for a specific
disordered metallic system, in accord with the essential features of our new Mooij (a vs p) plot.

PACS numbers: 72.15.Eb, 71.55.Jv

More than a decade ago, Mooij found that, at room
temperature, the sign and the size of the temperature
coefficient of electrical resistivity [TCR=—o.(p) =p
x t1p/t) T) correlate well with the magnitude of the re-
sistivity (p) in many disordered metallic systems. '

Furthermore, Mooij observed that n changes sign in a
relatively narrow range of resistivity (i.e., the critical
resistivity for which o. =0, p, ~100-150 p, A cm). In
the literature, a resistivity value of 150 p, A cm has
often been given fundamental signiTicance in the sense
that it serves as a universal boundary which divides the
positive and negative TCR's. In this Letter, I will

demonstrate that p, is not universal and, in fact, it can
have values ranging from 30 to as high as 400 p, A cm
and above (Fig. 1). Also, I will use the concept of
electron localization to understand the nonuniversality
of Mooij correlation. I will also show that there is a
unique and monotonic correlation between a and p for
a specific disordered metallic system. This correlation
may be very useful in extracting valuable information
about various inelastic electron scattering processes,
the electron-phonon mean free path, for example.

The data collected in the original Mooij (a vs p)
plot were mostly for crystalline disordered metallic sys-
tems (122 points), and there were only 11 data points
for amorphous metals. In this work, I have compiled
more than 500 data points collected from the litera-
ture. 2 The results for —5.0~ a» +4.0 (in units of
10 4 K ') as a function of p are presented in Fig. l.
For comparison, solid lines outline the region where
the original Mooij data points were distributed. Sever-
al salient features emerge from Fig. 1. Many data
points lie outside of the Mooij region which suggests
that the original, approximately linear correlation
between a and p is not an accurate summary of the ex-
perimental data. The magnitude of the critical resis-
tivity p, depends very much on the individual materi-
al, and can vary from 30 to 400 p, A cm. Clearly, the
data show that no fundamental significance should be
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FIG. 1. TCR vs electrical resistivity for various crystalline
disordered metallic conductors (open boxes) and amorphous
metals (open circles) at room temperature. The solid lines
were used to outline the region where the original Mooij
data points were distributed.

attached to the resistivity value of 150 p, A cm. For
metals with room-temperature resistivity p ( 200 p, A
cm, it appears that there is no tangible correlation
between n and p. The fact that many relatively low-

resistivity (p —50 p. A cm) amorphous metals are
characterized by relatively large negative TCR's shows
that resistivity alone cannot determine the sign of TCR
in metals. For p & 200 p, A cm, the TCR tends to be
more negative with increasing p. The data presented
in Fig. 1 encompass those of a wide variety of disor-
dered metals. The negative TCR can be found in the
crystalline as well as in the amorphous state, in bulk
samples as well as in thin films. Apparently, no partic-
ular kind of disorder favors the occurrence of negative
TCR's. In short, the experimental data compiled in
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Fig. 1 suggest that the correlation between a and p in

disordered metals is nonuniversal, contrary to the ori-

ginal Mooij suggestion.
In this Letter, I propose to use the concept of elec-

tron localization to study the resistivity dependence of
a for various disordered metallic systems. The Mooij
correlation has been discussed qualitatively by several
authors in terms of localization, but the issue of
nonuniversality has never been considered. 3 5 For a
critical review on this topic, the reader is referred to
the article by Lee and Ramakrishnan. 6 Following Ka-
veh and Mott, 5 we begin our discussion of a in disor-
dered metals with quantum corrections to the Boltz-
mann conductivity o.a(T) for the three-dimensional
case:

e2 1 1&~(T) =~a(T) —a(T) = ——,(1)
~W I., (T)

where l, is the elastic mean free path and L, the inelas-
tic diffusion length as defined by L, = ( —,

'
l, /&)

' 2, with /i

the inelastic mean free path. From Eq. (1), we obtain
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As usual, the temperature dependence of l, is ex-
pressed by l, ( T) = AT ~, where A is a constant, and
the value of P can vary with temperature (e.g. , P
= 2-5 for T & 40 K, P = 1 for T ) 200 K).

From Eq. (4), the condition for a=0 at T= T, can
be readily obtained:

by the following expressions:
1 bio-( T)

~(T) BT
1 Bo-( T)
(0) 8T (3)

From Eq. (2), it is straightforward to obtain the fol-
lowing result:

a( T) ~
/
—i/2/ 3/2k——2
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l, ( T, )/l, = —,', (k„l,)'. (5)
o.(T) =oii(0) 1—

(k, /, )'

e' 1 (kF/e)'
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In arriving at Eq. (2), I have assumed that /, « /i, a
condition satisfied even at room temperature for most
highly disordered metals as a result of the fact that l, is
of the order of interatomic distances in such materials.
The first term in Eq. (2) represents the zero-
temperature, quantum-corrected conductivity o.(0)
due to localization; the second term describes the com-
petition between the degradation of the quantum-
interference effects as a result of inelastic scattering
and the conventional thermal excitation of various in-
elastic processes. Obviously, the balance between
these competing effects on the current-transport elec-
trons determines the sign and the size of a as a func-
tion of temperature. Before we use Eq. (2) to derive
an expression for a(T), the following experimental
facts should be emphasized:

(i) For most disordered metals„ the temperature-
dependent part of the conductivity in the temperature
range of 0-300 K is generally 100/0 or less of o.(0).

(ii) The value of o. for highly disordered metallic
conductors is about 5-20 times higher than that of the
Mott minimum conductivity. This is consistent ~ith
the fact that kF/, for most amorphous metals is about
4—10 which is still significantly above the Joffe-Regel
criterion for a metal-insulator transition. We expect,
therefore, that the weak-localization assumption on
which Eq. (1) is based is valid, and it is reasonable to
approximate a( T) for disordered metallic conductors

By applying this condition to Eq. (2), we get an ex-
pression for the critical resistivity p, for the three-
dimensional case:

' —1
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F G. 2. The critical resistivity p, as a function of I, and
kF, based on Eq. {6).

where pa(0) =3~ /1/e k„l,. Equation (6) clearly indi-
cates that the crossover point, p„ in the a-vs-p plot is
not universal and depends independently on kF and l, .
In other words, p, depends on the material characteris-
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ties (kF) and its degree of disorder 1,.
According to Eq. (6), a plot of p, vs f, as a function

of k„ is presented in Fig. 2. From this figure, one can
understand quantitatively the nonuniversality of the
Mooij correlation as depicted in Fig. 1. We recall the
facts that the value of kF for most metallic systems lies
in the range of 1 A ' & kF & 2 A ' and the elastic
mean free path i, of the conduction electrons in highly
disordered systems cannot be much less than 2-3 A.
These experimental facts suggest a range of values for
the crossover resistivity in disordered metals (i.e.,
30-500 p, 0 cm), which is in excellent agreement with
the experimental data as shown in Fig. l. In particu-
lar, the preponderance of p, data around 150 iM, A cm
(see Fig. 1) is merely a manifestation of the fact that
many, if not most, disordered metallic conductors are
characterized by an elastic mean free path 1, of 5 + 2 A

and a Fermi wave vector kF of 1.5 +0.3 A '. For cer-
tain low-electron-density systems6 (kF & 1 A ') such
as Si:P, Eq. (6), however, predicts a value for p, about
103 p, O cm and higher.

For the low-dimensional cases, the conditions for
u = 0 and the formula for p, can be obtained similarly
as for the three-dimensional case. The results are list-
ed as follows:

2D case:—For sample thickness t & Li2D, and
L 2D i ~g( ( 1 ) t/2

li/l, =m(kpl, ) for u=0, (7)

p, =
I k I, —~ '[1+in( ,'nk I )]—) '. (8)

1D case:—

1/i = (4n ) 3 for u =0,

p,'n =0.63mt/e2 I, .

We notice that, in the 2D case, p~2n depends only on
kFI, as a product and hence is material independent.
In this sense, p2n is universal for a given amount of
disorder provided that the electron-interaction effects
are relatively small as compared with that of localiza-
tion. In reality, however, unlike in the 3D case, the
electron-electron interaction usually cannot be ignored
and the universality as suggested by Eq. (8) cannot be
observed experimentally. The 1D case is clearly non-
universal because p,'n depends on a material-
dependent parameter 1,. The cases of mixed dimen-
sions (e.g. , classically 3D and quantum mechanically
2D) will be treated in a future publication.

Now back to u as a function of p for 3D disordered
metals; one can study u(p) numerically for a given
temperature by using both Eqs. (2) and (4). As can be
seen from these equations, u(p) depends only on kF
and 1, (T). If kF is kept constant, the results of a nu-
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FIG. 3. TCR as a function of electrical resistivity at room
temperature. The dots are data points and are the digitized
values for TCR's derived from the p-vs- Tcurves of Fig. 5 in
Ref. 7. The solid curve is obtained ~ith a numerical calcula-
tion based on Eqs. (2) and (4), on the assumption that
k„=1.7 A-', I, = AT-', and A =5000 A K.

merical analysis show that u always decreases linearly
with increasing p for p )p, . For p & p„u increases
rapidly with decreasing p. The value of p„of course,
is determined by Eq. (6) as discussed previously. The
details of such a numerical study will be published
later. As an example, a comparison between the
theory and an experiment is shown in Fig. 3. The ex-
perimental data are taken from the work of Dynes,
Rowell, and Schmidt7 on the electrical resistivity of
LuRh4B4 films (3000 A) as a function of temperature
and disorder induced by 1.8-MeV u-particle irradia-
tion. The data points (dots shown in Fig. 3) are the
digitized values for u derived from the p-vs- T curves
of Fig. 5 in Ref. 7. The theoretical curve is obtained
on the assumption that kF = 1.7 A ' and A = 5000 A

K [l,(T) = AT '1. We note that kF=1.7 A ' corre-
sponds to a free-electron Fermi level of 11 eV, as sug-
gested by a self-consistent energy-band calculations on
a similar ternary boride ErRh4B4. Also, I should point
out that the only fitting parameter A = 5000 A K cor-
responds to a reasonable value —15 A for the inelas-
tic mean free path at room temperature. As indicated
clearly in Fig. 3, the essential characteristics of the ex-
perimental data u as a function of disorder p can be
described by the weak-localization model.

The agreement between the experimental data and
numerical results probably could be improved if the
effects of electron-electron interaction and spin-orbit
scattering were included in the numerical analysis.
Furthermore, we should take into account the possibil-
ity that inelastic scattering can be a function of the
amount of disorder9 in the sample. By and large, the
evidence presented so far strongly suggests that elec-
tron localization plays a significant role in determining
the sign as well as the magnitude of TCR in 3D disor-
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dered conductors even at room temperature. In addi-
tion to the temperature-dependent resistivity, numer-
ous measurements6 of magnetoconductivity, and of
upper critical field in certain cases, have given strong
supporting evidence for the importance of localization
effects in 3D disordered metals at low temperatures
( T ( 4 K). For the room-temperature case, a magnet-
ic field H of the order of 100 T is needed to observe a
positive magnetoconductivity effect arising from the
delocalization process by a magnetic field. This is best
understood by comparing the magnetic and thermal
(inelastic) dephasing length scales [L~= (k/2eH)'~2,
and L, ( T) as defined earlierj. If localization is viewed
simple-mindedly as an interference effect arising from
electron coherent backscattering, a magnetic field of H
can weaken the localization significantly only if the
condition of LM ( Li( T) is satisfied. For example, to
delocalize the highly disordered n-particle-irradiated
films of LuRh484 (L, ~10 A at room temperature as
inferred from the data fitting shown in Fig. 3), one
would need a magnetic field of about 600 T, a magnet-
ic field strength extremely difficult if not impossible to
achieve experimentally. This is in accord with the fact
that there has been no report of negative magne-
toresistance as an evidence of localization for 3D
disordered metals at room temperature. It, neverthe-
less, underscores the relative ease and importance of
studying the temperature dependence of electrical
resistivity as a function of disorder. In this sense, a
numerical analysis based on Eqs. (2) and (4) repre-
sents a simple and viable way of probing the interplay
between localization and inelastic scattering processes
such as electron-phonon interaction.

In conclusion, I have demonstrated for the first time
that the correlation between TCR and resistivity is
nonuniversal and is more complex than the original
Mooij correlation. The origin of this nonuniversality
can be understood quantitatively in terms of a com-

petition between incipient localization and the conven-
tional Boltzmann electron transport at room tempera-
ture. By taking into account the quantum corrections
to the Boltzmann conductivity, I have shown that the
critical resistivity depends on Fermi level and disorder
for 3D conductors and can have values ranging from
30 to about 400 p, 0 cm for various disordered metals,
in excellent agreement with the experimental data. By
using numerical analysis, I also show that for a specific
disordered metallic system, such as n-particle-irradi-
ated LuR+84, there is a unique and monotonic corre-
lation between a and p which can explain the essential
features of the new Mooij (a vs p) plot.
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