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Long-Range Crossover and "Nonuniversal" Exponents in Micellar Solutions
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Observations of apparently nonuniversal exponents at the lo~er consolute points of micellar
solutions of e-dodecyl-octaoxyethylene glycol monoether in H20, 020, etc. , are analyzed by use of
crossover scaling-theory and Ising-model results. The data quantitatively sustain a picture of stable
micelles of radius R undergoing ordinary criticality with crossover to Ising behavior delayed by an
increasing range of interaction measured by $0, the observed correlation-length amplitude: The
crossover points, t, —= ( T, —T, )/ T, —(R/$0) 6, vary by a factor & 10~ correlating with the changes
seen in y, ff and v, ff.

PACS numbers: 64.70.Ja, 05.70.Jk, 64.60.Cn, 82.70.—y

Dilute aqueous solutions of the nonionic amphiphil-
ic molecules n-alkyl-polyoxyethylene glycol monoeth-
ers, i.e., CH3(CH2)& iO(CH2OCH2)JH, which formu-
la will be labeled C,E&, exhibit the formation of mi-
celles of well-defined size in the temperature and con-
centration range T= 10 to 40'C, c = 1 to 20 wt. '/0. On
raising the temperature, one finds a lower consolute
point T, above which a solution of critical concentra-
tion c, separates into a micelle-rich and a micelle-poor
phase. For C6E3 in H20, one has T, =41'C and
c, =13 wt. %; however, for Ct2Es the critical concen-
tration is only 3% while T, = 74 'C.

The critical points for C,EJ with i & 6 and j& 3
seem to belong to the Ising universality class, as found
for ordinary binary fluid mixtures. Thus, the isother-
mal osmotic compressibility X—= (Bc/BII)r~ and the
correlation length ((T) can be well represented, for
c = c, and small t= (T, —T)/T—„by

x(T) = C/tr, g(T) =(p/t",

with exponents i = & t = 0.63 and y = yt = I 24.
the other hand, recent measurements spanning
t & 10 4-10 2 by Degiorgio and co-workers'2 on
Ct2Es in H20 yield y =0.88 +0.03 and i = 0.43 + 0.03.
These exponent values are even lower than the classi-
cal (van der Waals or mean field) values, yp= 1 and
i p

= —,'. Furthermore, the critical behavior proves
surprisingly sensitive to changes in the solvent: Ad-
ding salts, such as CsI, to make 0.1 M solutions in-
creases y by 0.13-0.18. More strikingly, replacement
of pure H20 by pure D20 results, at t=10, in a
fivefold increase in X, and gives2 y=1.20+0.03,
v=0.59+0.03; a 50:50 mixture yields intermediate
values. (For t ) 10 2, by contrast, the changes in X

amount to no more than + 5'/o. )
Two types of questions arise: (a) How can the ap-

parently "nonuniversal" critical exponents be under-
stood in terms of changing effective interactions? Is a
new type of critical behavior involved'? (b) What mi-
croscopic mechanism in the solution modulates the ef-
fective interactions? How does this depend on deu-
teration, on the presence of salts, on the magnitude of

i and j'? In this note, I argue, in answer to (a), that no
intrinsically new critical behavior is entailed3: Specifi-
cally, I demonstrate that the detailed data are con-
sistent with a crossover from classical to Ising behavior
controlled by a reduced range A describing the interac-
tions between micelles regarded as units. 4 Further-
more, A can be determined from the observations.
Questions of type (b) are not addressed. 5

Consider, first, the length scales. If micelles are the
basic interacting units, their radius R, as determined
well outside the critical region, ' sets the microscopic
scale corresponding to a, the lattice spacing in discrete
models or the reciprocal momentum cutoff in continu-
um field theories.

To test the hypothesis that the micelles act as units
even through the critical region, we compare the "sus-
ceptibility" X with the correlation length. If up is the
molecular volume, the mean number N ())1) of
molecules in a micelle varies as R /up in d dimensions,
while the density n of micelles varies as up/R . Since
X is a fluctuation density, it is proportional to nN2

Next note that, 6 quite generally, X should vary as
((/a) " with q& 0.04 for d~3. This implies the
exponent relation y= (2 —q)i which, to within the
available precision, is well verified by all the data'2 for
Ct2Eii, on which we focus. If Mp is the molecular
weight and c is the mass density, we thus expect

rtN2 Rd-2+el(2 —
vl (2)

Mp ( " A'Mii

ks T a lip ks T

where A and A' are numerical constants.
It follows from (2), with the approximation q=0,

that the ratio X/R$2 should remain constant in the
critical region as one varies the solvent, (ij) being
fixed. Testing this on the dataz for Ci2Eii in H20,
D20, and a 50:50 mixture yields the values shown in
rows (i)-(iii) of Table I. The constancy of the ratio, at
about 4.4, is remarkable in view of the variations in y
(from 1.20 to 0.88). The data of Ref. 1 span a smaller
range of t and are less precise. However, if X/R$2 is
estimated by C/Rgp [in accord with (1), but at a cost
in accuracy] the values listed in rows (iv)-(viii) of
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Data for C12&8 (see text) in various solvents. The uncertainties in fitting the
exponent y are 0.03; t and t+ specify the fitting range. Uncertainties refer to the last
decimal place.

1V

vl

vl1

vl 1 1

Solvent'

020
50:50
H20

020
aQY

agY;

aQYii

H20

R (~)b

32
33.5d

35

34
33
35
35
34

lx/R g2)c

4.3(+3)
4.35( +4)
4.4( +4)

6.0( + 28)
10( +4.5)
8.6( +41)
4.4(+20)
4.6( + 15)

1.20
1.03
0.88

1.18
1.06
1.03
1,01
0.92

1.13( +26)
1.79( + 30)
2.63( + 43)

1.19( + 31)
1.37( +33)
1.14( + 30)
1.40( + 36)
2.26( + 52)

2.0/4. 0
2.0/4. 0
2.0/4. 2

1.6/3. 2
1.6/3. 2
1.6/3. 2
1.6/3. 2
1.6/3. 2

See Ref. 2 for (i)-(iii); Ref. 1 for (iv)-(viii); the 0.1 M aqueous solutions contain: (v) Csl, (vi)
(CH3) NH, and (vii) CsCl.

bUncertainties in R ( —RH, see Ref. 2) are + 2 L.
'In units of 10' cm 5s . The absolute calibration factor found for H20, (iii), has been used also for

(i) and (ii).
"Interpolated between (i) and (iii).

the table are found: These are consistent with a con-
stant value around 4.5.

To understand the variations in y, consider the in
teraction range b, which is best defined theoretically via
the second moment of the attractive part of the poten-
tial. Following Ornstein and Zernike, 6 one knows that
b is intimately linked to the scale of propagation of
correlations, and may thence be identified with the
amplitude go in (1). Accordingly, we define the re-
duced interaction range by A =4/0/R~ b/a, where no
special significance attaches to the factor 4. Now the
various solutions in Table I are listed (separately for
Refs. 1 and 2, since very different ranges of t are
spanned) in order of decreasing magnitude of the fit-
ted exponent y. Note that, except for solution (vi),
the order is also one of increasing A. The data are thus
consistent with the idea, based on the Ginsburg cri-
terion and the long-range, Ic:ac-van der Waals limit,
that increasing A induces a crossover from nonclassical
to classical critical behavior and hence leads to an ap-
parent decrease in y.

The objection might be raised that such a crossover
could not yield values such as y ——0.88, which lie out-
side the range yi= 1.24 to y0=1. But this objection
cannot be sustained in the absence of reliable calcula-
tions of the form of the crossover. To describe that,
the effective exponent function y, tr(t) = 0 lnX/dlntis
useful. This approximates the value of y centered at
logt given by log-log fits over a decade or two. Now,
y, ir should approach yi as t 0 and yo for "large*' t;
ho~ever, the approaches need not be monotonic.
Thus, nearest-neighbor d=3 Ising models exhibit an
approach to y from above with y«r ——1.250 for
t = 10 3, but a decrease towards yi = 1.239 for small-
er t. Furthermore, explicit renorrnalization-group cal-
culations to order e =4—d for crossover from Ising to
X'For Heisenberg, etc. , reveal complex behavior with

"overswings" and "underswings" which can even
exceed the total asymptotic change in y. For Ci2ES, the
observed overswing2 is about 1.00 —0.88=0.12 which
is only 50% of b, y =yi —yo.

The nature of the crossover should be described by
standard scaling theory. 6 If g denotes the leading ir-
relevant variable, associated with the energy amplitude
U4 of the s term in an equivalent spin Hamiltonian,
the crossover from classical behavior is given by6

x(Tg) = t 'X(g/tt'), (3)

(UJk T)'~ (a/b)'i =BA-"i (5)

This last result is essentially that given by the
Ginsburg criterion for the validity of classical theory.
In treating B as a constant, we suppose that the varia-
tion of U4/ka Tis not significant compared to that pro-
duced by A which, for d= 3, carries an exponent of
—6. In a convenient normalization, the exponent
crossover function must, as usual, satisfy6

E(lny) =1+y~+ . as y 0,

= E„/y" as y—
where ti= —,'a+ 0(e2) (=0.5, d=3) 8 is the leading
correction-to-scaling exponent.

Now, to order e one actually finds9

E(lny) = 1/(1+ y't').

with Q = —,
' e for e —= 4 —d ) 0. The exponent P is ex-

act and, for a/b not too large, 9'0 one has
g~ U4(a/b) ~. Differentiating (3) and rearranging
yields

ff( t) = 1 + AyE(lnt lnt„), —

in which 4y = yi —
yo ——0.24 while the crossover tern

perature varies as
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The corresponding y, tr for d=3 is represented by the
solid curve in Fig. 1. (The convenient assignment
t„=10 35 has been used. ) The full crossover is
spread over four or five decades, the gradient
1 = —By, /Blogt achieving a maximum of 0.069 per
decade. However, over the interval y,rr=1.21-1.13
the gradient is only I' =0.056. This may be compared
with results for the "equivalent neighbor" fcc Ising
model in which each spin has equal couplings, J to all

spins in its first k neighboring shells. " Ratio analysis
of the series for X to orders from (J/k&T)6 to
(J/kaT)8 gives a y ir for t =10 25 of 1.252(+0003)
for k=1 (nearest neighbor), 1.226-1.198 for k=2
(next-nearest neighbor) but only 1.113-1.148 for
k=3.'2 On the other hand, by geometry one finds
Ak= b/a=1, ( —')' and (—")'/ for k=1, 2, 3. Via

(5), one obtains a gradient I =0.116 +0.011 per dec-
ade, which is evidently tw ce as l'arge as the O(e) pre-
diction for the same y interval.

Clearly then, computations to higher order in e

would be desirable but, to our knowledge, none are
available. Such calculations should also involve the
coefficients U5 and U6 of the equivalent s5 and s6

terms which may, indeed, play a role in producing
nonmonotonicity with y, tr& 1.'3 In the absence of
further theoretical results, the approximant

E(lny) = (1+py' ')j[I + (p+ 1)y'/'+ qy']

may be used: It satisfies (6) and reduces to (7) when

p = q = 0. For p and q of order e, it should thus pro-
vide reasonable results since even at d = 3 we have
8 = —,'. The dot-dash curve in Fig. 1 (for e = 1) corre-
sponds to p = —1.36, q =0.74, and the assignment
t„=10 3'; these quite reasonable parameters provide
a very plausible fit to the experimental data which
have been plotted according to the following pro-
cedure.

First I use the data for A in Table I to compute t„
according to (5), in which I choose for B the arbitrary
but fixed value 10 5. (Changing B merely translates
the plot along the logt axis. ) Given the range over
which y is fitted, say, t to t+ as listed in the table, I
take the geometric mean to=(t t+)'t as the mid-
range value of t. Then to check (4) I plot the central
estimate for y vs log(to/t, ). Solid symbols are used
for the most precise and extensive data, namely, for
solutions (i)-(iii)'2; open symbols denote the older
data, (iv)-(viii). The width of the symbols specifies
the uncertainty arising in A from the measurement' of
the micelle radius, R. The heights of the surrounding
slanted boxes represent the uncertainties in y. The
widths of the boxes correspond to half the fitting range
(logt, logt+ ).

The sides of the boxes in Fig. 1 have been slanted in
order to represent a correlation between the deviations
in the (0 and y estimates. To understand this, note
first that uncertainties in (0 enter into t„via A.
Second, recall that q —-0, so that we expect, and find,
y —-2v. Thus, a low estimate for y should correspond
to a low estimate for v. When one examines the cross-
over in v, rr, for which all the parallel considerations
apply (see Fig. 2), this step is not needed. Finally, be-
cause all the data fitted lie below t=10 '6, a low es-
timated slope on a log-log plot for (( T) entails a high
estimate for the amplitude $0 and, hence, a less nega-
tive value for log(to/t„). Thus boxes slanting with a
slope Sy,iT/Slog($0)6 give a more informative view of
the data than would vertically sided boxes'4; likewise
for 2v, tr in Fig. 2. However, the reader is free to imag-
ine rectangles if preferred.

The plotted data in Figs. 1 and 2 exhibit two crucial
features: (a) they specify a rather well-defined cross-
over scaling function for the effective exponents, y, ff
and v, rr, and (b) the scale of the crossover corresponds
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FIG. 1. The effective exponent y,~ vs reduced fitting and

crossover temperatures, to and j, : see Table I and text.

-6 —5 to (t/t )
-3 -Z —i

FIG. 2. Variation of the effective exponent 2v, ff as in Fig.
1 vrith the same fitting parameters p and q but with use of
t„=10
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closely to that expected theoretically (which is mainly
determined by 8 = $ = —,

' ). More precisely, for y, tr in

the interval (1.05, 1.20) the gradient is about
I =0.14+0.03, which is only 20'/0 larger than found
for the fcc Ising model in the range (1.13, 1.21).
Indeed the gradient of the dot-dashed, fitted curve in
the latter interval is lower than for the Ising data! We
conclude that the data for the whole range of Ct2Eii
systems is consistent with a crossover from classical to
Ising critical behavior controlled by a varying range of
effective micelle-micelle interactions which is mea-
sured by the amplitude go of the overall correlation
length. There is no need to invoke some new or exot-
ic type of criticality.

Naturally some questions remain. On the theoreti-
cal side, concrete calculations yielding y,ff & 1 would
be valuable. It might be possible to perform appropri-
ate renormalization-group calculations to higher order
in a. Ising-model series expansions might also be
feasible for models with longer-range interactions. Of
course, a basic microscopic issue is to gain some
understanding of how the range A —go is so readily
varied.

On the experimental side, more precise measure-
ments of c, and R could shed further light on the pic-
ture of micelles as fixed units. '5 It may also be possi-
ble to extend the domain of the range parameter A.
Perhaps adding salts to a D2Q solution will reduce A

and yield y, rr closer (or even exceeding) 1.24. Con-
versely, if A could be increased further, one should
expect to see y, rr going through a minimum and then
rising back to yo = l. Insofar as the dot-dash fit in Fig.
1 is realistic, an increase in A by a factor of 2 beyond
that for Ct2Ea in H20 should yield y = 0.96. Solutions
of Ct4Eii, Ci4Eio, etc. , might enter this region and pro-
vide a stronger test of the interpretation advanced
here.
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discussions and for providing me with the experimen-
tal data. Conversations with Ben Widom, Stanislas
Leibler, and Raymond E. Goldstein are much appreci-
ated. The support of the National Science Foundation
(Grant No. DMR-81-17011) is gratefully acknowl-
edged.
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