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Self-Consistency Constraints on Turbulent Magnetic Transport and Relaxation
in a Collisionless Plasma
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Novel constraints on collisionless relaxation and transport in drift-Alfven turbulence are report-
ed. These constraints arise as a result of the effects of mode coupling and incoherent fluctuations
as manifested by the proper application of self-consistency conditions. The result that electrostatic
fluctuations alone regulate transport in drift-Alfven turbulence follows directly. Quasilinear trans-
port predictions are discussed in light of these constraints.
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Transport caused by turbulent magnetic fluctuations
is considered to be an important agent for relaxation
and confinement degradation in magnetically confined
plasmas. Previous investigations of turbulent magnet-
ic transport typically have utilized quasilinear models
of fluctuation dynamics, and have neglected self-
consistent field effects. '~ In this Letter, novel con-
straints on magnetic transport in fully developed col-
lisionless plasma turbulence are described. These con-
straints arise from the role of self-consistency condi-
tions (i.e., quasineutrality and Ampere's law) in
models of the dynamics of drift-Alfven microtur-
bulence which are more complete than quasilinear
theory. In particular, it is argued that the self-con-
sistency imposed by Ampere's law, along with proper
consideration of the role of mode coupling and in-
coherent fluctuations in the dynamics of relaxation,
together lead to the conclusion that transport and re-
laxation in drift-Alfven turbulence are regulated by the
electrostatic fluctuations. Previous transport models
are then reconsidered in light of these constraints.
Throughout this Letter, it is assumed that the drift
kinetic equation (DKE) governs electron dynamics,
and that ion dynamics is described by a warm, low-
frequency response.

The DKE relates the dynamics of phase-space densi-
ty fluctuations (Sf) to the relaxation of the average
distribution function ( {f) ) through the expression

„"d~,d'x a(5f')/at =
I
"d d'x a({f&')/at.—

Predictions of plasma transport and relaxation are thus
direct consequences of the nature of the fluctuation
dynamics. In particular, it is noteworthy that in fully
developed Vlasov turbulence, shear stresses generate
granular, incoherent fluctuations which are macropar-
ticlelike, localized, phase-space "blobs, " analogous to
fiuid eddys rather than to waves. s 6 Under certain
rather general conditions, such blobs can even support
localized self-trapping potentials (i.e., positive for elec-

trons) and hence have lifetimes which exceed the
average correlation time. 9 In general, the incidence
of incoherent fluctuations is indicative of the dynami-
cal signiflcance of mode-coupling processes. Thus,
magnetic transport driven by fully developed tur-
bulence cannot be described by quasilinear theory,
which intrinsically neglects the effects of mode cou-
pling and localized fluctuations.

Here, two related models of incoherent drift-Alfven
fiuctuation dynamics and induced transport are de-
scribed. The first is concerned with the evolution of
an isolated phase space blob f in a drift-Alfven system.
In the second model, statistical averaging is used to
construct a Lenard-Balescu turbulent collision integral
for the relaxation of {f) due to "fully developed"
(i.e., many blobs and collective resonances) drift-
Alfven microturbulence. While the statistical model is
more representative of fully developed turbulence, the
isolated-blob model helps develop physical intuition.
Both yield qualitatively similar insights into self-
consistency constraints on relaxation and transport.

In the first model, an isolated, localized, electron
phase-space density blob fwith velocity u~~ at position
xo is considered. The blob has correlation length h~~~
in velocity (of order of the trapping width) and hx, by,
Az in position space, where Az —

L~~ is the parallel
length scale for the system. Such blobs have been
characterized as maximum-entropy Bernstein-
Greene-Kruskal equilibria. Studies of their self-
consistent structure including the background plasma
dielectric shielding response show these blobs to be
long-lived, self-sustaining structures7 9 whose role in
relaxation is described by the DKE. This equation
states that for a background distribution
(f) = {f(v ~~,x) ), fevolves according to

, -„„,„ f&f)l!S X = — Uii X

Taylor expanding {f) around xo to first order in
(x —xol and noting that, for drift-Alfven turbulence,
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dx!dr = «g/&0+ ~ll &,/B0, it follows that

where we have neglected the velocity-space nonlineari-
ty for simplicity. With the inclusion of fluctuationsj '1 which are phase coherent with the potentials Q
and All and incoherent fluctuations f, the right-hand
side of Eq. (4) can be represented as a Lenard-Balescu
turbulent collision integral (LBTCI).5 The coherent
fluctuations drive (quasilinear) diffusion and the in-
coherent fluctuations give rise to a collisionless drag.
Equation (4) thus describes the slow-time-scale evo-
lution of (f) due to averaged fast-time-scale fluctua-
tions in the fields $ and A ll due both to collective os-
cillatinns and to incoherent fluctuations associated
with mode coupling in fully developed turbulence.
The purpose of this part of the paper is to report ef-
fects on predicted transport and relaxation rates which
follow from the imposition of self-consistency con-
straints relating incoherent and coherent fluctuations
(equivalently, granularity and plasma response) in the
turbulent transport equation.

When we extract the adiabatic distribution
(f) e$/T, from the total fluctuating distribution
(f (f) e$/ T, = h) —the evolution of (f) is driven by
the radial phase space flux: B (f)/Bt = BI r/Br, where

(B„Jll,) b
= —(~,~b) I„",' a„"-O(ax/I, ).

It is instructive to note that the familiar quasilinear
result

d d3xB/Bt(b, f2) =„d d3xD(Bf0/Bx)2
(here D is the quasilinear diffusion coefficient for
magnetic turbulence) can be recovered by the discard-
ing of fluctuation granularity by replacement of f in
the right-hand side of Eq. (I) with f 'i, the linear
coherent response. This observation is further evi-
dence that the constraint on magnetic transport and re-
laxation discussed above arises as a consequence of
self-consistency (Ampere's law) and the granularity of

1

i

C A U )I
6 AI'r= XRe i k @— All h»

B0 c
(5)

Coherent and incoherent nonadiabatic density com-
ponents are substituted into Eq. (5) in order to obtain
diffusion and drag operators. By definition, h~'~, the
usual coherent component, can be written as
h ' =R»4„@»„+R»„&ll» „, where R'b and R" are
generalized nonlinear electron coherent response func-
tions. The coherent ion response is hydrodynamic,
co ) kll ~ T, so that n;» „=R»'"„p» „, in accord with the

usual drift-Alfven model. Substituting h = h,'+ h, into
Eq. (5) yields

In the second model, relaxation and transport due to
fully developed collisionless drift-Alfven turbulence is
examined with use of standard statistical turbulence
theory. The relaxation of (f) is governed by the aver-
aged Vlasov equation

B(yl e a
(Br B0 Br c (4)

A A

J d~ll d3x (f2) = —2 (Ebri, )b—B - B(f) - (~,Jll, ) b
(2)

Br x „,„a,
J% jh )h

He«, ~b = —'7b4, ~, = '7e~ ll, ~h~~e $ and & ll are the electrostatic and the parallel component of the vector po-
««iais, «spectiveiy. Also, n, =jdi ll f, Jll, = —

~
e

~ f dv ll u ll f, ( ), deno«s an average over the blob volu~e
and energy scattering has been ignored for convenience. With quasineutrality (n, = ri&) and Ampere's law (Jll
= —'7l A ll, for negligible ion current), Eq. (2) implies that

Bf 2
f0 c (E ) + ( r l. II ) bB - (I3V2W

(3)
"0 "ll, ~0 I~ )~0

Self-consistency constraints regulate the relaxation
mechanisms. In particular, since B='7&ll xn and
'7 B=0, it follows that (8,'7i A ll) b

= —(B/
Br(B,Bb) ) b, which ultimately contributes only surface
terms of O(hx/ L„) && 1. Hence, in this simple
drift-Alfven system, magnetic fluctuations do not
result in evolution of f nor in the relaxation of (f).
The above argument is similar to that used to establish
the ambipolarity of magnetic transport. ' However,
here Ampere's law (with Jll;=0) and the granularity
(i.e., localization in phase space) of f imply that the
transport processes associated with the relaxation of all
moments of (f) are similarly constrained over scales of
b, x, the radial correlation length, i.e.,

I r= /Re'i k R»~„(qb2)» „—
». cu

(~ l'l )». + R», (@~ll )», — R»~ ((~ ll 4)»,

(~ ll h)», cu
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where the first four terms constitute the usual quasi-
linear diffusion operator, containing electrostatic, mag-
netic, and off-diagonal terms, respectively. The last
two terms constitute the drag operator, and are in-

duced by incoherent fluctuations. Note that the first
quasilinear term and first drag term govern all trans-

A A

port moments arising from Ex B motion (Etif),
whereas the second quasilinear term and second drag
term govern all transport moments arising from mag-
netic flutter (B„f).

The fluctuations hk „and hk „are related by
Ampere's law and quasineutrality, which respectively
imply that

4~i e~ 4m-
k. eu Ilk, au+ k, ~ 4'k, cu J du(( &P hk ~= — Jllk

C

and that
A AIV

d ' fk +dk '
A~~k = dU~~ hk = ilk

Here d"", d" ~, d~", and d~ @ are dielectric tensor
elements obtained from velocity moments of the elec-
tron and ion coherent phase-space density responses.
It is thus possible to express A

~~
and @ in terms of J~~

and Il, as

p~4n-
A Ilk, o) + k ~ dk, cu Jllk, cu dk, co ~k, ~ (7a)

Setting 2 = d~ "d" ~ —d" "d& & =0 determines the ei-
genfrequencies of the system. Equations (7a) and
(7b) indicate that the collective plasma response
shields incoherent density and current fluctuations.
This shielding mechanism underlies the relationship
between hk and hk, which follows from Eqs. (7a) and
(7b) and the definition of hk. Note that Eqs. (7a) and
(7b) assume that the collective resonances (where
Re& k „=0) are nonlinearly oversaturated or stable.

Self-consistency constraints are imposed on the
LBTCI by substitution of Eqs. (7a) and (7b) into Eq.
(6) for each @ and A~~. For the electron response
functions Rk „,Rk~„which multiply the diffusion and
off-diagonal terms, moderate or weak spectral broad-
ening (hco ~oi) is assumed, allowing these functions
to be written in standard fashion with use of the ballis-
tic propagator n & (co —

k~~ v
~~
):

(f) (Gl —
QJ~&) l7r5(Q) —kii 8 g ),

R„"„=—Rk&„(v ~~/c).

Similarly, the correlation function is written as ( h ) k „
=2~5(~ —k~~w~~) (h )k. The drag terms are multi-
plied by the unit operator 5 'L =X '(d" ~d~"
—d~ ~d" "). The dielectric tensor elements appearing
in this unit operator have electron contributions which
a«4~ I e I/c times the ~

~~
moment of Rk „and Rk „in

the case of d"" and d" ~, respectively; and the u~,

average (zeroth moment) of R„"„and Rk~„ in the case
of d~" and d~~. If we note these contributions,
inspection of the LBTCI shows that the magnetic

"flutter" diffusion term v~~ ((B/Bo) )5(co —k~~v~~) is
exactly canceled by the electron-electron piece of the
(A ~~ h) drag term,

'(d" ~lmd~" —d~ ~ Imd" ")m/k~~ c(A ~~ h)

(d~" and d"" contain electron contributions only).
Similarly, inspection shows that the electrostatic dif-
fusion term ((@2)) is exactly canceled by the elec-
tron-electron piece of the (@h) drag,

'(Imd~&, ,
~

)
d@ "—Imd~~;,",~d" ")(Ph) .

The surviving terms in the LBTCI are (1) the elec-
tron-ion electrostatic drag term

Z -'(imd", ,'.~, d~"-lmd, f.~&d"")(jh),
(2) "nonresonant" magnetic and electrostatic drag
operators,

'(d" @Red~" d~ ~Re—d"")cu/k~~ c(A
~~ h)

and

'(Red" i'di'" —Red~ ~d"")(Qh)

respectively, and (3) the cross diffusion terms (A ~~@)
and ($A ~~), which, like the nonresonant drag opera-
tors, are also proportional to Redk „. Consistent with
the assumption of moderate spectral broadening, the
susceptibilities dk „are evaluated on collective reso-
nance, ReL =0, where Redk „ is negligible on either
the Alfven or drift-wave branches. The collective res-
onance condition implies that the plasma shielding re-
sponse is dominated by waves. With Redk „=0,both
nonresonant drag operators and cross diffusion terms
(A~~$) and (QA~~) vanish, so that only the electron-
ion drag terms associated with ExB motion survive.
Equation (6) reduces to

(c/Bo) k„
2n5(o) k)( u(() [Re—Sk „],

(8a)

S„„=X„„'(@h)„[d„""„Imd~„~;,„j, (8b)

in the usual case of negligible ion current (JI~ 0,
Imdk ~t;,„~ =0). Finally, it should be noted that in
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the electrostatic limit the LBTCI reduces to the form
previously derived and evaluated. 6

Equations (Sa) and (Sb) indicate that magnetic
transport including quasilinear magnetic flutter trans-
pOrt l —~~~ ((&/&O) ) k&(to —

k~~ u
~~ ] dOeS nOt COntrib-

ute to the relaxation of (f), and thus is not responsi-
ble for electron energy or momentum transport! In-
sight into this result can be gained by noting that

8(f,)/Bt —1m'~„~&;,„), which indicates that electron
phase-space relaxation is proportional to the dissipative
ion coupling to the electrostatic potential. Indeed, if
such dissipative ion coupling is absent, the LBTCI
vanishes and (f) cannot relax. This result is analo-
gous to those obtained using collisional and collision-
less Lenard-Balescu equations for a one-dimensional
electron-ion plasma. " In that system, constraints of
momentum and energy conservation on the interac-
tion (collisional or collisionless) of localized phase
space fluctuations imply that like "particle collisions"
leave the final state identical to the initial state, thus
precluding relaxation of (f). This results in a similar
cancellation of electron-electron terms, leaving
8(f)/jt proportional to ImXt, where Xt is the ion sus-
ceptibility. Here, since J~~ 0, the only electron-ion
coupling occurs through 1m'&„~~;,„).

The two models of collisionless drift-Alfven dynam-
ics, the isolated blob and fully developed turbulence
models, respectively, give consistent, complementary
insights into the effect of the same self-consistency
constraints on relaxation and transport. In the case of
an isolated blob, Ampere's law and the granularity
(i.e., localization in phase space) of f lead to the result
that 8(f )/8t —(BrJ~~, ) —(iJ(BttB,)/Br) ~ 0, to
O(hx/L„). In the case of fully developed turbulence,
Ampere's law, quasineutrality, and the proper con-
sideration of granular, incoherent fluctuations in the
dynamics of (f) result in the cancellation of diffusive
magnetic flutter terms (in the LBTCI) by electron-
electron drag terms ( —(A ~~ h) ). Both results indi-
cate that transport and relaxation in drift-Alfven turbu

lence are regulated by electrostatic fluctuations.
It is interesting to reconsider theories of anomalous

transport due to magnetic flutter in light of the discus-
sion presented here. In particular, a recent paper' by
Kadomtsev and Pogutse (KP) treats transport caused
by small-scale, high-frequency (b,x —c/to~, to —uT, /
qR) electromagnetic turbulence. Tacitly assuming that
the transport-causing small scales are nonlinearly
driven by larger scales via cascading, KP then use
quasilinear theory (with dissipation due to electron
Landau resonance) and mixing-length estimates to
derive the thermal conductivity X, —e (cz/to~~) u T,/qR
Ho~ever, dissipative ion coupling is ignored
throughout their analysis. Thus, by way of contrast, a
parallel calculation following the discussion presented
here yields the result that X, vanishes! The discrepan-

cy is due to the fact that KP invoke mode coupling to
drive the transport-causing scales, but compute X, us-
ing quasilinear theory ignoring incoherent fluctuations.
The theory of Carreras, Diamond, and co-workers4
also investigates magnetic-flutter transport effects.
Their study is a treatment based on resistive magne-
tohydrodynamics and is not fully self-consistent.
However, the present considerations do not apply to
magnetic transport resulting from relaxation driven by
collisional or macroscopic (i.e. , resistive magnetohy-
drodynamics) turbulence and conclusions of the
present analysis cannot be extended to such cases.

It is important to note that other restrictions apply as
well to the discussion presented here. These results
are not applicable to regimes with strong spectral
broadening (b, co ) to) In t. hat case it is not possible to
use a ballistic propagator in the particle responses and
the cancellations described above are only partial.
While magnetic transport would then be possible, it
nevertheless could not be described by quasilinear
theory but would require some sort of large-amplitude,
self-consistent treatment. Furthermore, stationary
turbulence is assumed throughout. Nonstationary tur-
bulence (such as in the case of growing waves) permits
the exchange of energy and momentum between
waves and incoherent fluctuations, thus allowing dif-
ferent relaxation mechanisms. Finally, these con-
siderations do not straightforwardly lend themselves to
the study of magnetic transport induced by external
perturbations, such as an applied helical coil.
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