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Nonlocal Electron Heat Transport by Not Quite Maxwell-Boltzmann Distributions
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%e have made numerical calculations with a new nonlocal fluid treatment of Coulomb collisional
electron transport which self-consistently accounts for the nonthermal high-energy electrons arising
from the spatial transport of thermal electrons whose range is not short compared with the tem-
perature scale length. Heat fluxes associated with steep gradients are reduced from classical, while

ahead of a temperature front there is preheating which exceeds classical.
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The need for an efficient self-consistent treatment
of high-flux electron transport in laser-irradiated plas-
mas has been acute for some time. Intense research
has identified and resolved important issues in the
Coulomb collisional theory. '2 It is now understood
that the failure of classical transport occurs when the
mean free path of the high-energy heat-carrying elec-
trons is not much smaller than the temperature scale
length. This implies that the transport fluxes are not
locally determined. In fact, idealizations of systems of
interest have been successfully described by a fully
multigroup (in energy) diffusion (in space) treat-
ment. 2 This reduced Fokker-Planck theory accounts
for the nonthermal distribution induced at high energy
by the transport itself; this in turn acts to alter the
transport from classical. Heat fiuxes associated with
steep temperature gradients are reduced from classical,
while ahead of a temperature front there is preheating
which exceeds classical. This understanding has been
gained by analysis of state-of-the-art numerical calcula-
tions still too inefficient for application to more than a
few problems.

In practice ad hoc fluid schemes have been em-
ployed to treat high-flux electron transport. The most
robust of these, flux limitation, limits the heat flux to
a fraction of its so-called free-streaming value,
Qti = Fti n ( T/m) 'l2 T; however, in the context of the
Coulomb collisional theory, this prescription is un-
physical in that it is pointwise local. Recently a new
fluid scheme possessing nonlocal phenomenology has
been employed and normalized against certain first-
principles calculations. 3

Here we report numerical calculations with a nonlo-
cal fluid treatment of Coulomb collisional transport
which self-consistently accounts for the nonthermal
high-energy electrons arising from the spatial transport
of thermal electrons whose range is not short com-
pared to the temperature scale length. The associated

Fokker-Planck calculation has been carried out analyti-
cally and permits the first-principles formulation of a
nonlocal (in space) description of the evolution of the
plasma temperature. Our theory requires that the
number and energy of the nonthermal electrons be
small, but their number and energy fluxes are not re-
stricted and may dominate the total fluxes. Indeed, we
have recovered in detail the results of previous fully
multigroup diffusion laser-absorption and heat-trans-
port calculations. 2 Our transport scheme is suitable for
implementation in one-dimensional laser-plasma simu-
lation codes and is expected to be efficient enough for
general utility.

The reduced Fokker-Planck equation which governs
the electron distribution in position and total energy is2
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Here vm/22= e+ e@(x,t) and the scattering mean free
path is
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Equation (I) neglects the hydrodynamics of the back-
ground ions as slow on the transport time scale.

The electron number and energy
r 1

de~ mv2
(n, ', nT}=4m- 'fo

rn
'

2

obey the associated moments of Eq. (1)
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Electron-electron collisions, d/dt, conserve both
number and energy of the species. The electrostatic
potential is determined by the requirement of
quasineutrality, n = ZW. In the present apphcation this
becomes the vanishing of the number flux, r (e@)= 0.
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The number and energy fluxes, I and g, are

If dfpj'dt„ is dominant in Eq. (1), then the distribu-
tion takes its local-thermodynamic-equilibrium form,
the Maxwell-Boltzmann,

fp- fMa = [n/(2~ T/m)'/']exp[ —(~+ e@)/ T].

Employing fMa in Eqs. (3) yields classical transport
wherein Qce —B T/Bx; this closes the fluid Eqs. (2).

The transport itself upsets the MB distribution
whenever the scale length of interest, the temperature
gradient L, is not much longer than the stopping

1 B v "9p BfMa 1 B v ~9p BSf 2mv3 BSf
v Bx 6 Bx v Bx 6 Bx X, Be

length, P, = (2A.~X,/3)'/2. This may be seen by es-
timating dfp/dt —(v/4A. ,)fp and comparing it with
the spatial diffusion term —(vP 9p/6L2) fp. Here
A.,= (mv2)2/2ne4. n InA~ is the energy-loss mean free
path. It is instructive to recognize A. ,= (2A.,/
3X9p) '/21'

9p as the displacement associated with random
walking the path length A., in steps of X9p. On account
of the strong energy dependence of &„ it is the distri-
bution of the higher-energy electrons that is most
readily altered by the transport. Inspection of Eq. (3)
reveals that these higher-energy electrons are the ones
which carry the fluxes and so must in turn be account-
ed for in calculating the transport.

Thus motivated, we write fp= fMa+Sf and solve
for 8fat high energy where Eq. (1) becomes

(4)

treatment of the transport.
In Eqs. (3) we have energy integrals of Bfp/Bx

= ( I/A. , )Bfp/B(; this differentiation acts on the
Gaussian kernel in Eq. (5) for fp. We replace B/Bg by
—B/B(' and integrate by parts in g' to cast the spatial
derivative onto fMaj T. The electric field enters expli-
citly upon differentiation of the exponential factor of
fMii. It is convenient to split the potential into local
and nonlocal parts, e$ = e@i+eQ„,, where Be/i/Bg
= (T/n)Bn/Bg —( —', )BT/B(. Finally e ) —e@ is ex-
ploited by letting —e$ 0 everywhere except under
differentiation by ('.

The resulting double energy integrals have been
computed to obtain

(z z, )'/' Be(I',g}=— dx' T '/ (1,T] {I,K] — " (J,L] .
4n (3m)'/' " ' Bx' ' Bx'

Here we have made the transformation dg'B/B$'= dx'B/Bx'. The nonlocal transport propagators P = I, J, K, and L
are functions of only

Here fMa is annihilated by d/dt, and we have neglected the thermalization of high-energy electrons on the bulk
as small by TB In5f/Be compared with the energy loss retained. Also, the temporal variation of the distribution
and potential are assumed slow. Equation (4) makes explicit that the source (in energy, possibly negative) of
nonthermal electrons 8fis the spatial transport of thermal electrons fMa.

We solve Eq. (4) in the limit e & —e$ so that mv2/2 —~ and find

, exp{ —[(f—g')2/(e'" —e4)]) fMa«' &')

[~(e&4 e4)]I/2 T(g')

Here d(= dx/A, , and we use A. =A./(mv2)2. We have
not yet taken account of spatial boundary conditions.
We have also passed a factor of Z'/2 through B/Bx in
defining ( and thus require that the ionization state
vary more slowly than the temperature.

Equation (5) shows that nonthermal electrons at (
and e have come from all g' and all e' & e by stopping
transport. We observe that fp of Eq. (5) is determined
by the spatial distribution of density and temperature
in fMa. We shall neglect the small number and ener-
gy, Sn and 53nT/2, of nonthermals in the fluid equa-
tion (2) so that the density and temperature of the
plasma become those of the MB distribution. Thus
substitution of fp of Eq. (5) into Eqs. (3) closes the
fluid Eqs. (2) and naturally yields a nonlocal (in space)

0 =
( [dx"/X, (x")]/ T'(x') (,

which is the number of stopping lengths from the source point x' to the field point x at an energy equal to the
source temperature.

The propagators have the following form:
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TABLE I. Coefficients for the nonlocal transport propagators described in the text.
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For small 8 they fall off linearly, P(&) P(0)
+ P'(0)8, while for large 8 they fall off exponentially
in 82/5

P(8) ~ 32(2n/5)'t AH" exp[ —(5/4 )&' '1

The constants o, P, P(0), P'(0), A, y, and the propa-
gator normalization integrals are shown in Table I.

We have analyzed two limiting temperature profiles
which illuminate the physics in play. First, in the limit
of gradients much longer than the stopping length, the
nonlocal heat flux reduces to classical because only x'
near x contributes in the integrals of Eqs. (6). We let
dx' T A. , de and employ the propagator normaliza-
tions. Taking Beg„i/Bx 5BT/Bx from I'=0 yields
the classical results,

Beth/Bx ( T/n)Bn/Bx+ ( —', )B T/Bx

duced absorption recorded in the table is associated
with (1) since K,~ T 3t2; this feature and (2) are typi-
cal of strongly flux-limited simulations required to
reproduce results of laboratory experiments. Here
(1), (2), and (3) are due to the stopping of electrons
as they transport from the laser-heated plasma. The
nonisothermal corona also results from nonlocal trans-
port from there towards the colder, denser plasma.
This physical phenomenon is also responsible for the
preheat foot.

Figure 2 shows that including nonlinear reduction of
the laser opacitys brings the absorbed energy, heat
flux, and temperature all into agreement with previous
direct solutions of Eq. (1).2 Indeed, at high energy the
underlying nonlocally determined distribution func-
tion, fp of Eq. (5), is in agreement as well. 2

Q ~ 25.532n( T/m) A. Mpp B T/Bx.

Here XMpp= T ),9p.
Second, our nonlocal heat flux is naturally self-

limiting. For a temperature step from hot to cold over
a distance much shorter than a stopping length we find
me@„,—3a Tand

Q l.285 ()t9p/A. ,) 't2 ( n/mtt2) ( TH3t2 —Tc3t2).
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Laser

X
50 X 10 4cm

10--
n = ZN (102"/cmsj

T critical 1.2 1.4

f absorbed 0.63 0.56

Z=10
l = 10 Nl/cm
O 120 X 10 "2sec

Transport Classical Nonlocal
Absorption Classical Classical

Note that the temperature within the transition interval
does not enter here; the limit of our nonlocal treat-
ment is indeed nonlocal.

We have also solved the fluid equation (2) with the
nonlocal fiuxes of Eq. (6) numerically. Figure 1

shows some results of illuminating a stationary plasma
with a constant intensity laser beam. To this end we
have introduced the source ill in the energy equation. 4

The calculation was terminated when the heat flux into
the overdense plasma equaled the absorbed laser flux
so that the coronal plasma had reached a quasisteady
condition.

In Fig. 1 we note that the signatures of the nonlocal
transport are (1) a hot absorption layer, (2) a steep
temperatore gradient separating the laser- and conduc-
tion-heated plasma, (3) a nonisothermal corona, and
(4) a preheat foot on the temperature profile. The re-
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FIG. 1. Nonlocal transport gives significantly different
results from classical in a calculation of a laser-heated plas-
ma; classical absorption, K=1.0 (Ref. 4). Here a l-p, m
wavelength laser is incident upon a 100-p, m scale length
plasma initially isothermal at 100 eV. The collision strengths
are lnA„=2. S and lnA =5. We limit e, to W2 its vacuum
value.
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FIG. 2. Previous fully multigroup diffusion transport
results (Ref. 2) are recovered by the nonlocal treatment
when nonlinear reduction of the laser opacity (Refs. 4 and

5) is introduced in the calculation described in Fig. 1„here
K —0.7. The electron distribution is sho~n at the positions
labeled on the ( T, 0) plot. To show the role of the electric
field we plot the ratio of the heat flux to that due to the tem-

perature gradient alone.

In our treatment we have neglected the effect on
transport of the nonthermal distribution induced at
low energy by laser heating. 5 This heating is commun-
icated to the high-energy transporting electrons via the
temperature T; self-collisions mediate between laser
heating at low energy and transport at high energy.

The effect of the nonlocally determined electric field
is also displayed in Fig. 2. The field acts to reduce the
heat flow from that due to the temperature gradient.
The reduction is substantial and is not constant, being
both larger and smaller than in the classical limit. In
particular, less-than-classical reduction occurs in the

preheat region because only a relatively small electric
field arises there to establish zero total current against
the small current of high-energy heat-transporting
electrons.

We have checked that neglect of thermalization of
high-energy electrons on the bulk electrons is justi-
fied. 6 Only modest errors of our nonlocal treatment
are indicated.

Energy conservation in the laser-heated plasma cal-
culations requires that there be no heat flux into the
vacuum. This implies the condition rJfg"dx=0 at the
boundary; this is straightforward but tedious to imple-
ment as an (infinit) series of images. Provided that
the entire system is many stopping lengths in extent, it
is sufficient to include a single-image plasma on the
vacuum side of the fluid calculation. In our calcula-
tions we extended the I' and Q integrations over this
image plasma to ensure that the fluxes vanished
correctly at the boundary.

Implicit solution of the nonlocal transport equations
requires inversion of a full matrix for the temperatures
and potentials. This, together with setting up the
underlying variables, represents a modest burden com-
pared with the classical diffusion theory. The new

physics obtained appears to be commensurate with its
cost.
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